Instantaneous speed (IS) measurement is crucial in condition monitoring and real-time control of rotating machinery. Since the direct measurement of instantaneous rotating speed is not always available, the vibration measurement has been used for indirect estimation methods. In this paper, a novel indirect method is proposed to estimate the IS of rotating machinery. First, a frequency-shift synchrosqueezing transform is proposed to process the vibration signal to obtain the time–frequency (TF) representation. Second, the Viterbi algorithm is employed to extract the shifted instantaneous frequency (IF) from the TF representation. Finally, the extracted IF is used to recover the IF of the measured vibration signal. The IS of rotating machinery can be calculated from the estimated IF. The proposed method is validated with both numerical simulations and experiments. The results show that the proposed method could provide much higher frequency resolution, better TF concentration results, and more accurate IF estimation of the considered signal compared with the synchrosqueezing method. Furthermore, the proposed method was confirmed to be less sensitive to noise, especially for high-frequency components.