Kang, Y.-C., Chun, D.-M., Jun, Y., and Ahn, S.-H., 2010, “Computer-Aided Environmental Design System for the Energy-Using Product (EUP) Directive,” Int. J. Precis. Eng. Manuf., 11(3), pp. 397–406.
[CrossRef]Rao, P. P., and Gopinath, A., 2013, “Energy Savings in Automotive Paint Ovens: A New Concept of Shroud on the Carriers,” ASME J. Manuf. Sci. Eng., 135(4), p. 045001.
[CrossRef]Park, C.-W., Kwon, K.-S., Kim, W.-B., Min, B.-K., Park, S.-J., Sung, I.-H., Yoon, Y., Lee, K.-S., Lee, J.-H., and Seok, J., 2009, “Energy Consumption Reduction Technology in Manufacturing—A Selective Review of Policies, Standards, and Research,” Int. J. Precis. Eng. Manuf., 10(5), pp. 151–173.
[CrossRef]Herrmann, C., Thiede, S., Kara, S., and Hesselbach, J., 2011, “Energy Oriented Simulation of Manufacturing Systems—Concept and Application,” CIRP Ann.-Manuf. Technol., 60(1), pp. 45–48.
[CrossRef]Ma, J., Ge, X., and Lei, S., 2013, “Energy Efficiency in Thermally Assisted Machining of Titanium Alloy: A Numerical Study,” ASME J. Manuf. Sci. Eng., 135(6), p. 061001.
[CrossRef]Wrona, E., and Nacke, B., 2001, “Rational Use of Energy in Induction Heaters for Forging Industry,” International Scientific Colloquium, Modeling for Saving Resources, Riga, pp. 153–157.
Levacher, L., Hita, I., Bethenod, C., and Hartmann, S., 2009, “Energy Efficiency in Industry: From Existing Technologies to Innovative Solutions,” ECEE 2009 Summer Study, La Colle sur Loup, France, pp. 1091–1100.
Park, H.-S., and Dang, X.-P., 2013, “Reduction of Heat Losses for the In-Line Induction Heating System by Optimization of Thermal Insulation,” Int. J. Precis. Eng. Manuf., 14(6), pp. 903–909.
[CrossRef]Bay, F., Labbe, V., Favennec, Y., and Chenot, J. L., 2003, “A Numerical Model for Induction Heating Processes Coupling Electromagnetism and Thermomechanics,” Int. J. Numer. Methods Eng., 58(6), pp. 839–867.
[CrossRef]Novac, M., Novac, O., Vladu, E., Indrie, L., and Grava, A., 2013, “Numerical Analysis of Electromagnetic Field Coupled With the Thermal Field in Induction Heating Process,”
Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering, Springer, New York.
[CrossRef]Favennec, Y., Labbé, V., and Bay, F., 2003, “Induction Heating Processes Optimization a General Optimal Control Approach,” J. Comput. Phys., 187(1), pp. 68–94.
[CrossRef]Rudnev, V. I., Loveless, D., Schweigert, K., Dickson, P., and Rugg, M., 2000, “Efficiency and Temperature Considerations in Induction Re-Heating of Bar, Rod and Slab,” Ind. Heat., 67, pp. 39–43.
Bodart, O., Boureau, A.-V., and Touzani, R., 2001, “Numerical Investigation of Optimal Control of Induction Heating Processes,” Appl. Math. Modell., 25(8), pp. 697–712.
[CrossRef]Galunin, S., Zlobina, M., Nikanorov, A., and Blinov, Y., 2005, “Numerical Optimization of Induction Through Heating for Forging,” 9th Russian-Korean International Symposium on Science and Technology, pp. 313–314.
Zgraja, J., 2005, “The Optimisation of Induction Heating System Based on Multiquadric Function Approximation,” Int. J. Comput. Math. Electr. Electron. Eng., 24(1), pp. 305–313.
[CrossRef]Rapoport, E., and Pleshivtseva, Y., 2006, Optimal Control of Induction Heating Processes, CRC Press, Boca Raton, FL.
Pleshivtseva, Y., Rapoport, E., Efimov, A., Nacke, B., and Nikanorov, A., 2008, “Special Method of Parametric Optimization of Induction Heating Systems,” International Scientific Colloquium, Modelling for Electromagnetic Processing, Hannover, Germany, pp. 229–234.
Rudnev, V., Brown, D., Tyne, C. J. V., and Clarke, K. D., 2008, “Intricacies for the Successful Induction Heating of Steels in Modern Forge Shops,” 19th International Forging Congress, Chicago, IL, pp. 71–82.
Rudnev, V., 2013, “Unique Computer Modeling Approaches for Simulation of Induction Heating and Heat-Treating Processes,” J. Mater. Eng. Perform., 22(7), pp. 1899–1906.
[CrossRef]Nemkov, V., 2009, Handbook of Thermal Process Modeling of Steels, CRC Press, Boca Raton, FL.
Galunin, S., Zlobina, M., Blinov, Y., Nikanorov, A., Zedler, T., and Nacke, B., 2006, “Electrothermal Modeling and Numerical Optimization of Induction System for Disk Heating,” International Scientific Colloquium Modeling for Material Processing, Riga, pp. 179–184.
Fireteanu, V., Popa, M., Tudorache, T., Levacher, L., Paya, B., and Neau, Y., 2007, “Maximum of Energetic Efficiency in Inductions Through-Heating Process,” HES-07, Padova, Italy, pp. 325–332.
Paya, B., Nacke, B., Lupi, S., Maréchal, F., Fautrelle, Y., and Levacher, L., 2009, “Issues for Energy Saving Solutions for Industry Using Innovative Induction Heating,” 5th European Conference Economics and Management of Energy in Industry, Vilamoura Algrave, Portugal, pp. 1–14.
Walther, A., 2008, “Induction Billet Heaters With Enthalpy Controlled Zone Heating,” International Scientific Colloquium, Modelling for Electromagnetic Processing, Hannover, pp. 235–241.
Rudnev, V., 2011, “Intricacies of Computer Simulation of Induction Heating Processes,” 28th Forging Industry Technical Conference, Schaumburg, IL, pp. 1–10.
Novac, M., 2008, “Numerical Modeling of Induction Heating Process Using Inductors With Circular Shape Turns,” J. Electr. Electron. Eng., 1(1), pp. 107–110.
Xun, W., Jie, Z., and Qiang, L., 2014, “Multi-Objective Optimization of Medium Frequency Induction Heating Process for Large Diameter Pipe Bending,” Procedia Eng., 81(0), pp. 2255–2260.
[CrossRef]Asadi, M., and Goldak, J. A., 2013, “An Integrated Computational Welding Mechanics With Direct-Search Optimization for Mitigation of Distortion in an Aluminum Bar Using Side Heating,” ASME J. Manuf. Sci. Eng., 136(1), p. 011007.
[CrossRef]Caiazzo, F., Alfieri, V., Corrado, G., Cardaropoli, F., and Sergi, V., 2013, “Investigation and Optimization of Laser Welding of Ti-6Al-4 V Titanium Alloy Plates,” ASME J. Manuf. Sci. Eng., 135(6), p. 061012.
[CrossRef]Hussain, M. F., Barton, R. R., and Joshi, S. B., 2002, “Metamodeling: Radial Basis Functions, Versus Polynomials,” Eur. J. Oper. Res., 138(1), pp. 142–154.
[CrossRef]Mullur, A., and Messac, A., 2006, “Metamodeling Using Extended Radial Basis Functions: A Comparative Approach,” Eng. Comput., 21(3), pp. 203–217.
[CrossRef]Park, H.-S., and Dang, X.-P., 2010, “Structural Optimization Based on CAD–CAE Integration and Metamodeling Techniques,” Comput.-Aided Des., 42(10), pp. 889–902.
[CrossRef]Sadeghipour, K., Dopkin, J. A., and Li, K., 1996, “A Computer Aided Finite Element/Experimental Analysis of Induction Heating Process of Steel,” Comput. Ind., 28(3), pp. 195–205.
[CrossRef]Rudnev, V. I., Loveless, D., Cook, R., and Black, M., 2002, Handbook of Induction Heating Marcel Dekker, New York.
Demidovich, V. B., and Rastvorova, I. I., 2014, “A Combined Method of Simulation of an Electric Circuit and Field Problems in the Theory of Induction Heating,” Russ. Electr. Eng., 85(8), pp. 536–540.
[CrossRef]Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., 2002, “A Fast and Elitist Multiobjective Genetic Algorithm: Nsga-Ii,” IEEE Trans. Evol. Comput., 6(2), pp. 182–197.
[CrossRef]Gossard, D., Lartigue, B., and Thellier, F., 2013, “Multi-Objective Optimization of a Building Envelope for Thermal Performance Using Genetic Algorithms and Artificial Neural Network,” Energy Build., 67(0), pp. 253–260.
[CrossRef]Kuriakose, S., and Shunmugam, M. S., 2005, “Multi-Objective Optimization of Wire-Electro Discharge Machining Process by Non-Dominated Sorting Genetic Algorithm,” J. Mater. Process. Technol., 170(1–2), pp. 133–141.
[CrossRef]Srinivas, N., and Deb, K., 1994, “Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms,” Evol. Comput., 2(3), pp. 221–248.
[CrossRef]