Technical Brief

Harmonic Differential Quadrature Method for Surface Location Error Prediction and Machining Parameter Optimization in Milling

[+] Author and Article Information
Ye Ding

State Key Laboratory of Mechanical System and Vibration,
School of Mechanical Engineering,
Shanghai Jiao Tong University,
Shanghai 200240, China
e-mail: y.ding@sjtu.edu.cn

XiaoJian Zhang, Han Ding

State Key Laboratory of Digital Manufacturing Equipment
and Technology,
Huazhong University of Science and Technology,
Wuhan 430074, China

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. Manuscript received May 15, 2014; final manuscript received August 5, 2014; published online December 12, 2014. Assoc. Editor: Tony Schmitz.

J. Manuf. Sci. Eng 137(2), 024501 (Apr 01, 2015) (6 pages) Paper No: MANU-14-1283; doi: 10.1115/1.4028279 History: Received May 15, 2014; Revised August 05, 2014; Online December 12, 2014

This paper presents a semi-analytical numerical method for surface location error (SLE) prediction in milling processes, governed by a time-periodic delay-differential equation (DDE) in state-space form. The time period is discretized as a set of sampling grid points. By using the harmonic differential quadrature method (DQM), the first-order derivative in the DDE is approximated by the linear sums of the state values at all the sampling grid points. On this basis, the DDE is discretized as a set of algebraic equations. A dynamic map can then be constructed to simultaneously determine the stability and the steady-state SLE of the milling process. To obtain optimal machining parameters, an optimization model based on the milling dynamics is formulated and an interior point penalty function method is employed to solve the problem. Experimentally validated examples are utilized to verify the accuracy and efficiency of the proposed approach.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Tlusty, J., 2000, Manufacturing Processes and Equipment, Prentice Hall, Upper Saddle River, NJ.
Budak, E., 2006, “Analytical Models for High Performance Milling. Part II: Process Dynamics and Stability,” Int. J. Mach. Tools Manuf., 46(12–13), pp. 1489–1499. [CrossRef]
Schmitz, T. L., and Smith, K. S., 2008, Machining Dynamics: Frequency Response to Improved Productivity, Springer, New York.
Altintas, Y., 2000, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, Cambridge University, Cambridge, UK.
Schmitz, T. L., Davies, M. A., and Kennedy, M. D., 2001, “Tool Point Frequency Response Prediction for High-Speed Machining by RCSA,” ASME J. Manuf. Sci. Eng., 123(4), pp. 700–707. [CrossRef]
Schmitz, T. L., and Duncan, G. S., 2005, “Three-Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction,” ASME J. Manuf. Sci. Eng., 127(4), pp. 781–790. [CrossRef]
Ghanati, M. F., and Madoliat, R., 2012, “New Continuous Dynamic Coupling for Three Component Modeling of Tool-Holder-Spindle Structure of Machine Tools With Modified Effected Tool Damping,” ASME J. Manuf. Sci. Eng., 134(2), p. 021015. [CrossRef]
Law, M., Phani, A. S., and Altintas, Y., 2013, “Position-Dependent Multibody Dynamic Modeling of Machine Tools Based on Improved Reduced Order Models,” ASME J. Manuf. Sci. Eng., 135(2), p. 021008. [CrossRef]
Karandikar, J. M., Schmitz, T. L., and Abbas, A. E., 2014, “Application of Bayesian Inference to Milling Force Modeling,” ASME J. Manuf. Sci. Eng., 136(2), p. 021017. [CrossRef]
Budak, E., and Tekeli, A., 2005, “Maximizing Chatter Free Material Removal Rate in Milling Through Optimal Selection of Axial and Radial Depth of Cut Pairs,” CIRP Ann. Manuf. Technol., 54(1), pp. 353–356. [CrossRef]
Kurdi, M. H., Schmitz, T. L., Haftka, R. T., and Mann, B. P., 2009, “Milling Optimisation of Removal Rate and Accuracy With Uncertainty: Part 1: Parameter Selection,” Int. J. Mater. Prod. Technol., 35(1–2), pp. 3–25. [CrossRef]
Merdol, S. D., and Altintas, Y., 2008, “Virtual Simulation and Optimization of Milling Applications—Part II: Optimization and Feedrate Scheduling,” ASME J. Manuf. Sci. Eng., 130(5), p. 051005. [CrossRef]
Altintas, Y., Stépán, G., Merdol, D., and Dombovari, Z., 2008, “Chatter Stability of Milling in Frequency and Discrete Time Domain,” CIRP J. Manuf. Sci. Technol., 1(1), pp. 35–44. [CrossRef]
Quintana, G., and Ciurana, J., 2011, “Chatter in Machining Processes: A Review,” Int. J. Mach. Tools Manuf., 51(5), pp. 363–376. [CrossRef]
Altintas, Y., and Budak, E., 1995, “Analytical Prediction of Stability Lobes in Milling,” CIRP Ann. Manuf. Technol., 44(1), pp. 357–362. [CrossRef]
Budak, E., and Altintas, Y., 1998, “Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation,” ASME J. Dyn. Syst. Meas. Contr., 120(1), pp. 22–30. [CrossRef]
Tunc, L. T., and Budak, E., 2013, “Identification and Modeling of Process Damping in Milling,” ASME J. Manuf. Sci. Eng., 135(2), p. 021001. [CrossRef]
Zheng, C. M., Wang, J.-J. J., and Sung, C. F., 2014, “Analytical Prediction of the Critical Depth of Cut and Worst Spindle Speeds for Chatter in End Milling,” ASME J. Manuf. Sci. Eng., 136(1), p. 011003. [CrossRef]
Insperger, T., and Stépán, G., 2002, “Semi-Discretization Method for Delayed Systems,” Int. J. Numer. Methods Eng., 55(5), pp. 503–518. [CrossRef]
Insperger, T., and Stépán, G., 2011, Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications, Springer-Verlag, New York.
Bayly, P. V., Halley, J. E., Mann, B. P., and Davies, M. A., 2003, “Stability of Interrupted Cutting by Temporal Finite Element Analysis,” ASME J. Manuf. Sci. Eng., 125(2), pp. 220–225. [CrossRef]
Butcher, E. A., Bobrenkov, O. A., Bueler, E., and Nindujarla, P., 2009, “Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels,” ASME J. Comput. Nonlinear Dyn., 4(3), p. 031003. [CrossRef]
Butcher, E. A., and Bobrenkov, O. A., 2011, “On the Chebyshev Spectral Continuous Time Approximation for Constant and Periodic Delay Differential Equations,” Commun. Nonlinear Sci. Numer. Simul., 16(3), pp. 1541–1554. [CrossRef]
Ding, Y., Zhu, L., Zhang, X., and Ding, H., 2010, “A Full-Discretization Method for Prediction of Milling Stability,” Int. J. Mach. Tools Manuf., 50(5), pp. 502–509. [CrossRef]
Schmitz, T., and Ziegert, J., 1999, “Examination of Surface Location Error Due to Phasing of Cutter Vibrations,” Precis. Eng., 23(1), pp. 51–62. [CrossRef]
Schmitz, T. L., and Mann, B. P., 2006, “Closed-Form Solutions for Surface Location Error in Milling,” Int. J. Mach. Tools Manuf., 46(12–13), pp. 1369–1377. [CrossRef]
Mann, B. P., Young, K. A., Schmitz, T. L., and Dilley, D. N., 2005, “Simultaneous Stability and Surface Location Error Predictions in Milling,” ASME J. Manuf. Sci. Eng., 127(3), pp. 446–453. [CrossRef]
Mann, B. P., Edes, B. T., Easley, S. J., Young, K. A., and Ma, K., 2008, “Chatter Vibration and Surface Location Error Prediction for Helical End Mills,” Int. J. Mach. Tools Manuf., 48(3–4), pp. 350–361. [CrossRef]
Insperger, T., Gradisek, J., Kalveram, M., Stépán, G., Winert, K., and Govekar, E., 2006, “Machine Tool Chatter and Surface Location Error in Milling Processes,” ASME J. Manuf. Sci. Eng., 128(4), pp. 913–920. [CrossRef]
Bachrathy, D., Insperger, T., and Stepan, G., 2009, “Surface Properties of the Machined Workpiece for Helical Mills,” Mach. Sci. Technol., 13(2), pp. 227–245. [CrossRef]
Ding, Y., Zhu, L., Zhang, X., and Ding, H., 2011, “On a Numerical Method for Simultaneous Prediction of Stability and Surface Location Error in Low Radial Immersion Milling,” ASME J. Dyn. Syst. Meas. Contr., 133(2), p. 024503. [CrossRef]
Eksioglu, C., Kilic, Z. M., and Altintas, Y., 2012, “Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems,” ASME J. Manuf. Sci. Eng., 134(6), p. 061006. [CrossRef]
Ding, Y., Zhu, L., Zhang, X., and Ding, H., 2013, “Stability Analysis of Milling Via the Differential Quadrature Method,” ASME J. Manuf. Sci. Eng., 135(4), p. 044502. [CrossRef]
Horn, R. A., and Johnson, C. R., 1991, Topics in Matrix Analysis, Cambridge University, Cambridge, UK.
Farkas, M., 1994, Periodic Motions, Springer-Verlag, New York.
Kurdi, M. H., 2005, “Robust Multicriteria Optimization of Surface Location Error and Material Removal Rate in High-Speed Milling Under Uncertainty,” Ph.D. thesis, University of Florida, Gainesville, FL.
Rao, S. S., 2009, Engineering Optimization: Theory and Practice, Wiley, Hoboken, NJ.
Yuan, Y., and Sun, W., 1997, Optimization Theory and Methods, Science Press, Beijing, China.
Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E., 1998, “Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions,” SIAM J. Optim., 9(1), pp. 112–147. [CrossRef]
Kolda, T. G., Lewis, R. M., and Torczon, V., 2003, “Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods,” SIAM Rev., 45(3), pp. 385–482. [CrossRef]
Ma, L., Melkote, S. N., and Castle, J. B., 2013, “A Model-Based Computationally Efficient Method for On-Line Detection of Chatter in Milling,” ASME J. Manuf. Sci. Eng., 135(3), p. 031007. [CrossRef]
Hynynen, K. M., Ratava, J., Lindh, T., Rikkonen, M., Ryynänen, V., Lohtander, M., and Varis, J., 2014, “Chatter Detection in Turning Processes Using Coherence of Acceleration and Audio Signals,” ASME J. Manuf. Sci. Eng., 136(4), p. 044503. [CrossRef]
Striz, A., Wang, X., and Bert, C., 1995, “Harmonic Differential Quadrature Method and Applications to Analysis of Structural Components,” Acta Mech., 111(1), pp. 85–94. [CrossRef]
Wang, Y., 2001, “Differential Quadrature Method and Differential Qudrature Element Method—Theory and Application,” Ph.D. thesis, Nanjing University of Aeronautics & Astronautics, Nanjing, China.


Grahic Jump Location
Fig. 1

Schematic mechanical model of the two degrees of freedom milling process [33]

Grahic Jump Location
Fig. 2

Surface location error defined by the desired and the machined surfaces: (a) up-milling and (b) down-milling

Grahic Jump Location
Fig. 3

Comparison of the proposed method with the TFEA method for SLE (5% immersion down-milling)

Grahic Jump Location
Fig. 4

The Pareto optimal set in the criterion space by solving problem P3




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In