Taminger, K. M., and Hafley, R. A., 2003, “Electron Beam Freeform Fabrication: A Rapid Metal Deposition Process,” Proceedings of the 3rd Annual Automotive Composites Conference, Troy, MI, Sept. 9–10, pp. 1–6.

Hibbitt, H. D., and Marcal, P. V., 1973, “A Numerical, Thermo-Mechanical Model for the Welding and Subsequent Loading of a Fabricated Structure,” Comput. Struct., 3(5), pp. 1145–1174.

[CrossRef]Friedman, E., 1975, “Thermomechanical Analysis of the Welding Process Using the Finite Element Method,” ASME J. Pressure Vessel Technol., 97(3), pp. 206–213.

[CrossRef]Andersson, B., 1978, “Thermal Stresses in a Submerged-Arc Welded Joint Considering Phase Transformations,” ASME J. Eng. Mater. Technol., 100(4), pp. 356–362.

[CrossRef]Argyris, J. H., Szimmat, J., and Willam, K. J., 1982, “Computational Aspects of Welding Stress Analysis,” Comput. Methods Appl. Mech. Eng., 33(1), pp. 635–665.

[CrossRef]Papazoglou, V., and Masubuchi, K., 1982, “Numerical Analysis of Thermal Stresses During Welding Including Phase Transformation Effects,” ASME J. Pressure Vessel Technol., 104(3), pp. 198–203.

[CrossRef]Free, J. A., and Porter Goff, R. F., 1989, “Predicting Residual Stresses in Multi-Pass Weldments With the Finite Element Method,” Comput. Struct., 32(2), pp. 365–378.

[CrossRef]Tekriwal, P., and Mazumder, J., 1988, “Finite Element Analysis of Three-Dimensional Transient Heat Transfer in GMA Welding,” Weld. J., 67(5), pp. 150–156.

Michaleris, P., Tortorelli, D. A., and Vidal, C. A., 1995, “Analysis and Optimization of Weakly Coupled Thermoelastoplastic Systems With Applications to Weldment Design,” Int. J. Numer. Methods Eng., 38(8), pp. 1259–1285.

[CrossRef]Lindgren, L. E., Runnemalm, H., and Näsström, M. O., 1999, “Simulation of Multipass Welding of a Thick Plate,” Int. J. Numer. Methods Eng., 44(9), pp. 1301–1316.

[CrossRef]Asadi, M., and Goldak, J. A., 2014 “An Integrated Computational Welding Mechanics With Direct-Search Optimization for Mitigation of Distortion in an Aluminum Bar Using Side Heating,” ASME J. Manuf. Sci. Eng., 136(1), p. 011007.

[CrossRef]Lindgren, L. E., 2001, “Finite Element Modeling and Simulation of Welding Part 1: Increased Complexity,” J. Therm. Stresses, 24(2), pp. 141–192.

[CrossRef]Lindgren, L. E., 2001, “Finite Element Modeling and Simulation of Welding. Part 2: Improved Material Modeling,” J. Therm. Stresses, 24(3), pp. 195–231.

[CrossRef]Lindgren, L. E., 2001, “Finite Element Modeling and Simulation of Welding. Part 3: Efficiency and Integration,” J. Therm. Stresses, 24(4), pp. 305–334.

[CrossRef]Michaleris, P., 2014, “Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes,” Finite Elem. Anal. Des., 86(0), pp. 51–60.

[CrossRef]Kolossov, S., Boillat, E., Glardon, R., Fischer, P., and Locher, M., 2004, “3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process,” Int. J. Mach. Tools Manuf., 44(2), pp. 117–123.

[CrossRef]Peyre, P., Aubry, P., Fabbro, R., Neveu, R., and Longuet, A., 2008, “Analytical and Numerical Modeling of the Direct Metal Deposition Laser Process,” J. Phys. D: Appl. Phys., 41(2), p. 025403.

[CrossRef]Qian, L., Mei, J., Liang, J., and Wu, X., 2005, “Influence of Position and Laser Power on Thermal History and Microstructure of Direct Laser Fabricated Ti–6Al–4V Samples,” Mater. Sci. Technol., 21(5), pp. 597–605.

[CrossRef]Shen, N., and Chou, K., 2012, “Thermal Modeling of Electron Beam Additive Manufacturing Process. Powder Sintering Effects,” ASME Paper No. MSEC2012-7253.

[CrossRef]Jamshidinia, M., Kong, F., and Kovacevic, R., 2013, “Numerical Modeling of Heat Distribution in the Electron Beam Melting

^{®} of Ti–6Al–4V,” ASME J. Manuf. Sci. Eng., 135(6), p. 061010.

[CrossRef]Sammons, P. M., Bristow, D. A., and Landers, R. G., 2013, “Height Dependent Laser Metal Deposition Process Modeling,” ASME J. Manuf. Sci. Eng., 135(5), p. 054501.

[CrossRef]Anca, A., Fachinotti, V. D., Escobar-Palafox, G., and Cardona, A., 2011, “Computational Modelling of Shaped Metal Deposition,” Int. J. Numer. Methods Eng., 85(1), pp. 84–106.

[CrossRef]Chiumenti, M., Cervera, M., Salmi, A., Agelet de Saracibar, C., Dialami, N., and Matsui, K., 2010, “Finite Element Modeling of Multi-Pass Welding and Shaped Metal Deposition Processes,” Comput. Methods Appl. Mech. Eng., 199(37), pp. 2343–2359.

[CrossRef]Lundbäck, A., and Lindgren, L. E., 2011, “Modeling of Metal Deposition,” Finite Elem. Anal. Des., 47(10), pp. 1169–1177.

[CrossRef]Marimuthu, S., Clark, D., Allen, J., Kamara, A., Mativenga, P., Li, L., and Scudamore, R., 2012, “Finite Element Modeling of Substrate Thermal Distortion in Direct Laser Additive Manufacture of an Aero-Engine Component,” Proc. Inst. Mech. Eng., Part C, 227(9), pp. 1987–1999.

[CrossRef]Mughal, M., Fawad, H., and Mufti, R., 2006, “Three-Dimensional Finite-Element Modelling of Deformation in Weld-Based Rapid Prototyping,” Proc. Inst. Mech. Eng., Part C, 220(6), pp. 875–885.

[CrossRef]Chin, R., Beuth, J., and Amon, C., 1995, “Control of Residual Thermal Stresses in Shape Deposition Manufacturing,” Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, Aug., pp. 221–228.

Klingbeil, N., Beuth, J., Chin, R., and Amon, C., 2002, “Residual Stress-Induced Warping in Direct Metal Solid Freeform Fabrication,” Int. J. Mech. Sci., 44(1), pp. 57–77.

[CrossRef]Michaleris, P., Feng, Z., and Campbell, G., 1997, “Evaluation of 2D and 3D FEA Models for Predicting Residual Stress and Distortion,” ASME, Conf. Pressure vessels and piping, Orlando, FL, pp. 91–102.

Zhang, L., and Michaleris, P., 2004, “Investigation of Lagrangian and Eulerian Finite Element Methods for Modeling the Laser Forming Process,” Finite Elem. Anal. Des., 40(4), pp. 383–405.

[CrossRef]Ding, J., Colegrove, P., Mehnen, J., Ganguly, S., Sequeira Almeida, P., Wang, F., and Williams, S., 2011, “Thermomechanical Analysis of Wire and Arc Additive Layer Manufacturing Process on Large Multilayer Parts,” Comput. Mater. Sci., 50(12), pp. 3315–3322.

[CrossRef]Berger, M. J., and Oliger, J., 1984, “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,” J. Comput. Phys., 53(3), pp. 484–512.

[CrossRef]Jasak, H., and Gosman, A., 2000, “Automatic Resolution Control for the Finite-Volume Method, Part 1: Aposteriori Error Estimates,” Numer. Heat Transfer: Part B, 38(3), pp. 237–256.

[CrossRef]Zienkiewicz, O. C., and Zhu, J. Z., 1987, “A Simple Error Estimator and Adaptive Procedure for Practical Engineerng Analysis,” Int. J. Numer. Methods Eng., 24(2), pp. 337–357.

[CrossRef]Picasso, M., 2003, “An Anisotropic Error Indicator Based on ZienkiewiczZhu Error Estimator: Application to Elliptic and Parabolic Problems,” SIAM J. Sci. Comput., 24(4), pp. 1328–1355.

[CrossRef]Berger, M. J., and Colella, P., 1989, “Local Adaptive Mesh Refinement for Shock Hydrodynamics,” J. Comput. Phys., 82(1), pp. 64–84.

[CrossRef]Bell, J., Berger, M., Saltzman, J., and Welcome, M., 1994, “Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws,” SIAM J. Sci. Comput., 15(1), pp. 127–138.

[CrossRef]Bank, R. E., Sherman, A. H., and Weiser, A., 1983, “Some Refinement Algorithms and Data Structures for Regular Local Mesh Refinement,” Sci. Comput. Appl. Math. Comput. Phys. Sci., 1, pp. 3–17.

Shepherd, J. F., Dewey, M. W., Woodbury, A. C., Benzley, S. E., Staten, M. L., and Owen, S. J., 2010, “Adaptive Mesh Coarsening for Quadrilateral and Hexahedral Meshes,” Finite Elem. Anal. Des., 46(1), pp. 17–32.

[CrossRef]Prasad, N. S., and Narayanan, S., 1996, “Finite Element Analysis of Temperature Distribution During Arc Welding Using Adaptive Grid Technique,” Weld. J., 75(4), pp. 123–128.

Runnemalm, H., and Hyun, S., 2000, “Three-Dimensional Welding Analysis Using an Adaptive Mesh Scheme,” Comput. Methods Appl. Mech. Eng., 189(2), pp. 515–523.

[CrossRef]Denlinger, E. R., Heigel, J. C., and Michaleris, P., 2014, “Residual Stress and Distortion Modeling of Electron Beam Direct Manufacturing Ti–6Al–4V,” Proc. Inst. Mech. Eng.

[CrossRef]Yu, G., Masubuchi, K., Maekawa, T., and Patrikalakis, N. M., 1999, “A Finite Element Model for Metal Forming by Laser Line Heating,” Proceedings of the First International Conference on Computer Applications in Shipbuilding, ICCAS, Cambridge, MA, June, Vol. 99, pp. 409–418.

Zhang, L., Reutzel, E., and Michaleris, P., 2004, “Finite Element Modeling Discretization Requirements for the Laser Forming Process,” Int. J. Mech. Sci., 46(4), pp. 623–637.

[CrossRef]Boyer, R. F., and Collings, E., 1994, *Materials Properties Handbook: Titanium Alloys*, ASM International, Materials Park, OH.

Hughes, T. J., 2000, *The Finite Element Method: Linear Static and Dynamic Finite Element Analysis*, Dover, Mineola, NY.

Lee, N. S., and Bathe, K. J., 1994, “Error Indicators and Adaptive Remeshing in Large Deformation Finite Element Analysis,” Finite Elem. Anal. Des., 16(2), pp. 99–139.

[CrossRef]Goldak, J., Chakravarti, A., and Bibby, M., 1984, “A New Finite Element Model for Welding Heat Sources,” Metall. Trans. B, 15(2), pp. 299–305.

[CrossRef]