0
Research Papers

Bioprinting Technology: A Current State-of-the-Art Review

[+] Author and Article Information
Amer B. Dababneh

Mechanical and Industrial
Engineering Department,
The University of Iowa,
Iowa City, IA 52242
Biomanufacturing Laboratory,
Center for Computer-Aided Design,
The University of Iowa,
Iowa City, IA 52242

Ibrahim T. Ozbolat

Mechanical and Industrial
Engineering Department,
The University of Iowa,
Iowa City, IA 52242
Biomanufacturing Laboratory,
Center for Computer-Aided Design,
The University of Iowa,
Iowa City, IA 52242
e-mail: ibrahim-ozbolat@uiowa.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. Manuscript received April 15, 2014; final manuscript received August 24, 2014; published online October 24, 2014. Assoc. Editor: David L. Bourell.

J. Manuf. Sci. Eng 136(6), 061016 (Oct 24, 2014) (11 pages) Paper No: MANU-14-1211; doi: 10.1115/1.4028512 History: Received April 15, 2014; Revised August 24, 2014

Bioprinting is an emerging technology for constructing and fabricating artificial tissue and organ constructs. This technology surpasses the traditional scaffold fabrication approach in tissue engineering (TE). Currently, there is a plethora of research being done on bioprinting technology and its potential as a future source for implants and full organ transplantation. This review paper overviews the current state of the art in bioprinting technology, describing the broad range of bioprinters and bioink used in preclinical studies. Distinctions between laser-, extrusion-, and inkjet-based bioprinting technologies along with appropriate and recommended bioinks are discussed. In addition, the current state of the art in bioprinter technology is reviewed with a focus on the commercial point of view. Current challenges and limitations are highlighted, and future directions for next-generation bioprinting technology are also presented.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Merrill, P., Murray, E., Harrison, H., and Guild, R., 1956, “Successful Homotransplantations of Human Kidneys Between Identical Twins,” J. Am. Med. Assoc., 160(4), pp. 277–282. [CrossRef] [PubMed]
Chen, H., and Ozbolat, I. T., 2013, “Manufacturing Living Things,” Ind. Eng. Mag., 45(1), pp. 30–34.
Desmet, T., Schacht, E., and Dubruel, P., 2008, “Rapid Prototyping as an Elegant Production Tool for Polymeric Tissue Engineering Scaffolds: A Review,” Tissue Engineering: Roles, Materials and Applications, S. J. Barnes, L. Harris, eds., Nova Science, New York, pp. 141–189.
Langer, R., and Vacanti, P., 1993, “Tissue Engineering,” Science, 260(5110), pp. 920–926. [CrossRef] [PubMed]
Bonassar, J., and Vacanti, A., 1998, “Tissue Engineering: The First Decade and Beyond,” J. Cell. Biochem. Suppl., 72(30), pp. 297–303. [CrossRef]
Griffith, G., and Naughton, G., 2002, “Tissue Engineering—Current Challenges and Expanding Opportunities,” Science, 295(5557), pp. 1009–1014. [CrossRef] [PubMed]
Ozbolat, I., and Yu, Y., 2013, “Bioprinting Toward Organ Fabrication: Challenges and Future Trends,” IEEE Trans. Biomed. Eng., 60(3), pp. 691–699. [CrossRef] [PubMed]
Smith, I., Liu, X., Smith, L., and Ma, P., 2009, “Nano-Structured Polymer Scaffolds for Tissue Engineering and Regenerative Medicine,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 1(2), pp. 226–236. [CrossRef] [PubMed]
Dietmar, H., Michael, S., and Makarand, R., 2004, “Scaffold-Based Tissue Engineering: Rationale for Computer-Aided Design and Solid Free-Form Fabrication Systems,” Trends Biotechnol., 22(7), pp. 354–362. [CrossRef] [PubMed]
Sachlos, E., and Czernuszka, T., 2003, “Making Tissue Engineering Scaffolds Work. Review on the Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds,” Eur. Cell Mater., 5, pp. 29–40. [PubMed]
Yang, S., Leong, K., Du, Z., and Chua, C., 2001, “The Design of Scaffolds for Use in Tissue Engineering, Part I. Traditional Factors,” Tissue Eng., 7(6), pp. 679–689. [CrossRef] [PubMed]
Jakab, K., Norotte, C., Marga, F., Murphy, K.,Vunjak-Novakovic, G., and Forgacs, G., 2010, “Tissue Engineering by Self-Assembly and Bio-Printing of Living Cells,” Biofabrication, 2(2), p. 022001. [CrossRef] [PubMed]
Langer, R., 2007, “Editorial: Tissue Engineering: Perspectives, Challenges, and Future Directions,” Tissue Eng., 13(1), pp. 1–2. [CrossRef] [PubMed]
Jakab, K., Norotte, C., Damon, B., Marga, F., Neagu, A., Besch-Williford, C., Kachurin, A., Church, K., Park, H., Mironov, V., Markwald, R., Vunjak-Novakovic, G., and Forgacs, G., 2008, “Tissue Engineering by Self-Assembly of Cells Printed Into Topologically Defined Structures,” Tissue Eng., Part A, 14(3), pp. 413–421. [CrossRef]
L'Heureux, N., Pâquet, S., Labb́e, R., Germain, L., and Auger, F., 1998, “A Completely Biological Tissue-Engineered Human Blood Vessel,” FASEB J, 12(1), pp. 47–56. [PubMed]
McAllister, T., Maruszewski, M., Garrido, A., Wystrychowski, W., Dusserre, N., Marini, A., Zagalski, K., Fiorillo, A., Avila, H., Manglano, X., Antonelli, J., Kocher, A., Zembala, M., Cierpka, L., de la Fuente, L. M., and L'heureux, N., 2009, “Effectiveness of Haemodialysis Access With an Autologous Tissue-Engineered Vascular Graft: A Multicentre Cohort Study,” Lancet, 373(9673), pp. 1440–1446. [CrossRef] [PubMed]
Norotte, C., Marga, S., Niklason, E., and Forgacs, G., 2009, “Scaffold-Free Vascular Tissue Engineering Using Bioprinting,” Biomaterials, 30(30), pp. 5910–5917. [CrossRef] [PubMed]
Mironov, V., Trusk, T., Kasyanov, V., Little, S., Swaja, R., and Markwald, R., 2009, “Biofabrication: A 21st Century Manufacturing Paradigm,” Biofabrication, 1(2), pp. 1–16. [CrossRef]
Guillemot, F., Mironov, V., and Nakamura, M., 2010, “Bioprinting is Coming of Age: Report From the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09),” Biofabrication, 2(1), p. 010201. [CrossRef] [PubMed]
Mironov, V., Reis, N., and Derby, B., 2006, “Bioprinting: A Beginning,” Tissue Eng., 12(4), pp. 631–634. [CrossRef] [PubMed]
Barron, J., Wu, P., Ladouceur, H., and Ringeisen, B., 2004, “Biological Laser Printing: A Novel Nechnique for Creating Heterogeneous 3-Dimensional Cell Patterns,” Biomed. Microdevices6(2), pp. 139–147. [CrossRef] [PubMed]
Guillemot, F., Souquet, A., Catros, S., Guillotin, B., Lopez, J., and Faucon, M., 2010, “High Throughput Laser Printing of Cells and Biomaterials for Tissue Engineering,” Acta Biomater., 6(7), pp. 2494–2500. [CrossRef] [PubMed]
Wang, W., Huang, Y., Grujicic, M., and Chrisey, B., 2008, “Study of Impact-Induced Mechanical Effects in Cell Direct Writing Using Smooth Particle Hydrodynamic Method,” ASME J. Manuf. Sci. Eng., 130(2), p. 021012. [CrossRef]
Barron, J. A., Ringeisen, B., Kim, H., Spargo, B., and Chrisey, D., 2004, “Application of Laser Printing to Mammalian Cells,” Thin Solid Films, 453(1), pp. 383–387. [CrossRef]
Nahmias, Y., Schwartz, R., Verfaillie, C., and Odde, D., 2005, “Laser-Guided Direct Writing for Three-Dimensional Tissue Engineering,” Biotechnol. Bioeng., 92(2), pp. 129–136. [CrossRef] [PubMed]
Guillotin, B., Souquet, A., Catros, S., Duocastella, M., Pippenger, B., Bellance, S., Bareille, R., Remy, M., Bordenave, L., Amedee, J., and Guillemot, F., 2010, “Laser Assisted Bioprinting of Engineered Tissue With High Cell Density and Micro-Scale Organization,” Biomaterials, 31(28), pp. 7250–7256. [CrossRef] [PubMed]
Gaebel, R., Mn, N., Liu, J., Guan, J., Koch, L., Kolpsch, C., Gruene, M., Toelk, A., Wang, W., Mark, P., Wang, F., Chichkov, B., Li, W., and Steinhoff, G., 2011, “Patterning Human Stem Cells and Endothelial Cells With Laser Printing for Cardiac Regeneration,” Biomaterials, 32(35), pp. 9218–9230. [CrossRef] [PubMed]
Nakamura, M., Kobayashi, A., Takagi, F., Watanabe, A., Hiruma, Y., and Ohuchi, K., 2005, “Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells,” Tissue Eng., 11(11–12), pp. 1658–1666. [CrossRef] [PubMed]
Xu, T., Gregory, A., Molnar, P., Cui, X., Jalota, S., and Bhaduri, B., 2006, “Viability and Electrophysiology of Neural Cell Structures Generated by the Inkjet Printing Method,” Biomaterials, 27(19), pp. 3580–3588. [CrossRef] [PubMed]
Geckil, H., Xu, F., Zhang, X., Moon, S., and Demirci, U., 2010, “Engineering Hydrogels as Extracellular Matrix Mimics,” Biomaterials, 5(3), pp. 469–484. [CrossRef]
Boland, T., Mironov, V., Gutowska, A., Roth, E., and Markwald, R., 2003, “Cell and Organ Printing 2: Fusion of Cell Aggregates in Three-Dimensional Gels,” Anat. Rec., 272A(2), pp. 497–502. [CrossRef]
Keenan, M., and Folch, A., 2008, “Biomolecular Gradients in Cell Culture Systems,” Lab Chip, 8(1), pp. 34–57. [CrossRef] [PubMed]
Wilson, W., and Boland, T., 2003, “Cell and Organ Printing 1: Protein and Cell Printers,” Anat. Rec., 272A(2), pp. 491–496. [CrossRef]
Campbell, G., and Weiss, E., 2007, “Tissue Engineering With the Aid of Inkjet Printers,” Expert Opin. Biol. Ther., 7(8), pp. 1123–1127. [CrossRef] [PubMed]
Xu, T., Jin, J., Gregory, C., Hickman, J., and Boland, T., 2005, “Inkjet Printing of Viable Mammalian Cells,” Biomaterials, 26(1), pp. 93–99. [CrossRef] [PubMed]
Yamazoe, H., and Tanabe, T., 2009, “Cell Micro Patterning on an Albumin-Based Substrate Using an Inkjet Printing Technique,” J. Biomed. Mater. Res., 91A(4), pp. 1202–1209. [CrossRef]
Nakamura, M., Kobayashi, A., Takagi, F., Watanabe, A., Hiruma, Y., Ohuchi, K., Iwasaki, Y., Horie, M., Morita, I., and Takatani, S., 2005, “Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells,” Tissue Eng., 11(11–12), pp. 1658–1666. [CrossRef] [PubMed]
Smith, M., Stone, L., Parkhill, L., Stewart, L., Simpkins, W., Kachurin, M., Warren, L., and Williams, K., 2004, “Three-Dimensional Bioassembly Tool for Generating Viable Tissue-Engineered Constructs,” Tissue Eng., 10(9–10), pp. 1566–1576. [CrossRef] [PubMed]
Skardal, A., Zhang, J., McCoard, L., Xu, X., and Oottamasathien, S., 2010, “Prestwich Photocrosslinkable Hyaluronan-Gelatin Hydrogels for Two-Step Bioprinting,” Tissue Eng., Part A, 16(8), pp. 2675–2685. [CrossRef]
Skardal, A., Zhang, J., and Prestwich, G., 2010, “Bioprinting Vessel-Like Constructs Using Hyaluronan Hydrogels Crosslinked With Tetrahedral Polyethylene Glycol Tetracrylates,” Biomaterials, 31(24), pp. 6173–6181. [CrossRef] [PubMed]
Lee, Y., Polio, S., Lee, W., Dai, G., Menon, L., and Carroll, R., 2010, “Bio-Printing of Collagen and VEGF-Releasing Fibrin Gel Scaffolds for Neural Stem Cell Culture,” Exp. Neurol., 223(2), pp. 645–652. [CrossRef] [PubMed]
Moon, S., Hasan, K., Song, S., Xu, F., Keles, O., and Manzur, F., 2010, “Layer by Layer Three-Dimensional Tissue Epitaxy by Cell-Laden Hydrogel Droplets,” Tissue Eng., Part C, 16(1), pp. 157–166. [CrossRef]
Jakab, K., Norotte, C., Damon, B., Marga, F., Neagu, A., Besch-Williford, L., Kachurin, A., Church, K., Park, H., Mironov, V., Markwald, R., Vunjak-Novakovic, G., and Forgacs, G., 2008, “Tissue Engineering by Self-Assembly of Cells Printed Into Topologically Defined Structures,” Tissue Eng., Part A, 14(3), pp. 413–421. [CrossRef]
Smith, C., Christian, J., Warren, W., and Williams, S., 2007, “Characterizing Environmental Factors That Impact the Viability of Tissue-Engineered Constructs Fabricated by a Direct-Write Bio-Assembly Tool,” Tissue Eng., 13(2), pp. 373–383. [CrossRef] [PubMed]
Cui, X., Gao, G., Yonezawa, T., and Dai, G., 2014, “Human Cartilage Tissue Fabrication Using Three-Dimensional Inkjet Printing Technology,” J. Vis. Exp., 10(88), p. e51294.
Boland, T., Xu, T., Damon, B., and Cui, X., 2006, “Application of Inkjet Printing to Tissue Engineering,” Biotechnol. J., 1(9), pp. 910–917. [CrossRef] [PubMed]
Phillippi, A., Miller, E., Weiss, L., Huard, J., Waggoner, A., and Campbell, P., 2008 “Microenvironments Engineered by Inkjet Bioprinting Spatially Direct Adult Stem Cells Toward Muscle- and Bone-Like Subpopulations,” Stem Cells, 26(1), pp. 127–134. [CrossRef] [PubMed]
Saunder, E., Gough, J., and Derby, B., 2008, “Delivery of Human Fibroblast Cells by Piezoelectric Drop-on-Demand Inkjet Printing,” Biomaterials, 29(2), pp. 193–203. [CrossRef] [PubMed]
Xu, T., Gregory, C., Molnar, P., Cui, X., Jalota, S., Bhaduri, S., and Boland, T., 2006, “Viability and Electrophysiology of Neural Cell Structures Generated by the Inkjet Printing Method,” Biomaterials, 27(19), pp. 3580–3588. [CrossRef] [PubMed]
Yamazoe, H., and Tanabe, T., 2009, “Cell Micro-Patterning on an Albumin-Based Substrate Using an Inkjet Printing Technique,” J. Biomed. Mater. Res., Part A, 91(4), pp. 1202–1209. [CrossRef]
Derby, B., 2008, “Bioprinting: Inkjet Printing Proteins and Hybrid Cell-Containing Materials and Structures,” J. Mater. Chem., 18(47), pp. 5717–5721. [CrossRef]
Le Hue, P., 1998, “Progress and Trends in Inkjet Printing Technology,” J. Imaging Sci. Technol., 42(1), pp. 49–62.
Stachowiak, J., Richmond, D., Li, T., Brochard, F., and Fletcher, A., 2009, “Inkjet Formation of Unilamellar Lipid Vesicles for Cell-Like Encapsulation,” Lab Chip, 9(14), pp. 2003–2009. [CrossRef] [PubMed]
Xu, T., Zhao, W., Zhu, J., Albanna, M., Yoo, J., and Atala, A., 2013, “Complex Heterogeneous Tissue Constructs Containing Multiple Cell Types Prepared by Inkjet Printing Technology,” Biomaterials, 34(1), pp. 130–139. [CrossRef] [PubMed]
Cui, X., Dean, D., Ruggeri, Z., and Boland, T., 2010, “Cell Damage Evaluation of Thermal Inkjet Printed Chinese Hamster Ovary Cells,” Biotechnol. Bioeng., 106(6), pp. 963–969. [CrossRef] [PubMed]
Barbara, L., Wen-Kai, H., Ian, M., and Keith, R., 2014, “Adult Rat Retinal Ganglion Cells and Glia Can Be Printed by Piezoelectric Inkjet Printing,” Biofabrication, 6(1), p. 015001. [CrossRef] [PubMed]
Cui, X., and Boland, T., 2009, “Human Microvasculature Fabrication Using Thermal Inkjet Printing Technology,” Biomaterials, 30(31), pp. 6221–6227. [CrossRef] [PubMed]
Weiss, L., Amon, C., Finger, S., Miller, E., and Romero, D., 2005, “Bayesian Computer-Aided Experimental Design of Heterogenous Scaffolds for Tissue Engineering,” Comput. Aided Des., 37(11), pp. 1127–1139. [CrossRef]
Xu, C., Chai, W., Huang, Y., and Marwald, R., 2012, “Scaffold-Free Inkjet Printing of Three-Dimensional Zigzag Cellular Tubes,” Biotechnol. Bioeng., 109(12), pp. 3152–3160. [CrossRef] [PubMed]
Xu, C., Huang, Y., and Markwald, R., 2013, “Vertical and Horizontal Fabrication of Alginate-Based Vascular-Like Constructs Using Inkjetting,” Proceedings of 23th International Solid Freeform Fabrication Symposium, Austin, TX, Aug. 6–8, pp. 1–9.
Xu, C., Zhang, M., Huang, Y., Ogale, A., Fu, J., and Markwald, R. R., 2014, “Study of Droplet Formation Process During Drop-on-Demand Inkjetting of Living Cell-Laden Bioink,” Langmuir, 30(30), pp. 9130–9138. [CrossRef] [PubMed]
Roda, A., Guardigli, M., Russo, C., Pasini, P., and Baraldini, M., 2000, “Protein Microdeposition Using a Conventional Ink-Jet Printer,” Biotechniques, 28(3), pp. 492–496. [PubMed]
Watanabe, K., Miyazaki, T., and Matsuda, R., 2003, “Fabrication of Growth Factor Array by Color Inkjet Printer,” Zool. Sci., 20(4), pp. 429–434. [CrossRef] [PubMed]
Campbell, P., Miller, E., Fisher, G., Walker, L., and Weiss, L., 2005, “Engineered Spatial Patterns of FGF-2 Immobilized on Fibrin Direct Cell Organization,” Biomaterials, 26(33), pp. 6762–6770. [CrossRef] [PubMed]
Mironov, V., Boland, T., Trusk, T., Forgacs, G., and Markwald, R., 2003, “Organ Printing: Computer Aided Jet-Based 3D Tissue Engineering,” Trends Biotechnol., 21(4), pp. 157–161. [CrossRef] [PubMed]
Calvert, P., 2001, “Inkjet Printing for Materials and Devices,” Mater. Sci. Eng., 13(10), pp. 3299–3305. [CrossRef]
Odde, D., and Renn, M., 1999, “Laser-Guided Direct Writing for Applications in Biotechnology,” Trends Biotechnol., 17(10), pp. 385–389. [CrossRef] [PubMed]
Wang, W., Li, Gang, and Huang, Y., 2009, “Modeling of Bubble Expansion-Induced Cell Mechanical Profile in Laser-Assisted Cell Direct Writing,” ASME J. Manuf. Sci. Eng., 131(5), p. 051013. [CrossRef]
Lothar, K., Stefanie, K., Heiko, S., Martin, G., Sabrina, S., Ralf, G., Bianca, P., Kerstin, R.,Stephanie, S., Nan, M., Peter, M., Gustav, S., and Boris, C., 2010, “Laser Printing of Skin Cells and Human Stem Cells,” Tissue Eng., 16(5), pp. 847–854. [CrossRef]
Nathan, R., Ryan, A., David, T., Karen, S., Deanna, M., Lee, A., Thomas, K., and Douglas, B., 2009, “Laser Direct Writing of Combinatorial Libraries of Idealized Cellular Constructs: Biomedical Applications,” Appl. Surf. Sci., 255(10), pp. 5444–5447. [CrossRef]
Ovsianikov, A., Gruene, M., Pflaum, M., Koch, L., Maiorana, F., Wilhelmi, M., Haverich, A., and Chichkov, B., 2010, “Laser Printing of Cells Into 3D Scaffolds,” Biofabrication, 2(1), p. 014104. [CrossRef] [PubMed]
Barron, J., Ringeisen, B., Kim, H., Spargo, B., and Chrisey, D., 2004, “Application of Laser Printing to Mammalian Cells,” Thin Solid Films, 453(383), pp. 383–387. [CrossRef]
Hon, K., Li, L., and Hutchings, I., 2008, “Direct Writing Technology—Advances and Developments,” CIRP Ann. Manufact. Tech., 57(2), pp. 601–620. [CrossRef]
Guillotin, B., Souquet, A., Catros, S., Duocastella, M., Pippenger, B., and Bellance, S., 2010, “Laser Assisted Bioprinting of Engineered Tissue With High Cell Density and Microscale Organization,” Biomaterials, 31(28), pp. 7250–7256. [CrossRef] [PubMed]
Gudapati, H., Yan, J., Huang, Y., and Chrisey, D. B., 2014, “Alginate Gelation-Induced Cell Death During Laser-Assisted Cell Printing,” Biofabrication, 6(3), p. 035022. [CrossRef] [PubMed]
Mironov, V., 2003, “Printing Technology to Produce Living Tissue,” Expert Opin. Biol. Ther., 3(5), pp. 701–704. [CrossRef] [PubMed]
Melchels, F., Domingos, M., Klein, T., Malda, J.,Bartolo, P., and Hutmacher, D., 2012, “Additive Manufacturing of Tissues and Organs,” Prog. Polym. Sci., 37(8), pp. 1079–1104. [CrossRef]
Yan, Y., Wang, X., Pan, Y., Liu, H., Cheng, J., Xiong, Z., Lin, F., Wu, R., Zhang, R., and Lu, Q., 2005, “Fabrication of Viable Tissue-Engineered Constructs With 3D Cell-Assembly Technique,” Biomaterials, 26(29), pp. 5864–5871. [CrossRef] [PubMed]
Khalil, S., Nam, J., and Sun, W., 2005, “Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds,” Rapid Prototyping J., 11(1), pp. 9–17. [CrossRef]
Lee, W., Debasitis, C., Lee, K., Lee, H., Fischer, K., and Edminster, K., 2009, “Multi-Layered Culture of Human Skin Fibroblasts and Keratinocytes Through Three-Dimensional Freeform Fabrication.,” Biomaterials, 30(8), pp. 1587–1595. [CrossRef] [PubMed]
Chang, R., Nam, J., and Sun, W., 2008, “Direct Cell Writing of 3D Micro-Organ for in vitro Pharmacokinetic Model,” Tissue Eng., 14(2), pp. 157–169. [CrossRef]
Khalil, S., and Sun, W., 2007, “Biopolymer Deposition for Freeform Fabrication of Hydrogel Tissue Constructs,” Mater. Sci. Eng., 27(3), pp. 469–478. [CrossRef]
Nair, K., Yan, K., and Sun, W., 2007, “A Multi-Level Numerical Model for Qunatifying Cell Deformation in Encapsulated Alginate Structures,” J. Mech. Mater. Struct., 2(6), pp. 1121–1139. [CrossRef]
Shim, J., Lee, J., Kim, J., and Cho, D., 2012, “Bioprinting of a Mechanically Enhanced Three-Dimensional Dual Cell-Laden Construct for Osteochondral Tissue Engineering Using a Multi-Head Tissue/Organ Building System,” J. Micromech. Microeng., 22(8), p. 085014. [CrossRef]
Zhang, Y., Yu, Y., Chen, H., and Ozbolat, I. T., 2013, “Characterization of Printable Cellular Micro-Fluidic Channels for Tissue Engineering,” Biofabrication, 5(2), p. 024004. [CrossRef]
Zhang, Y., Yu, Y., and Ozbolat, I. T., 2013, “Direct Bioprinting of Vessel-Like Tubular Microfluidic Channels,” ASME J. Nanotechnol. Eng. Med., 4(2), p. 021001. [CrossRef]
Dolati, F., Yu, Y., Zhang, Y., Jesus, A. M. D., Sander, E. A., and Ozbolat, I. T., 2014, “In Vitro Evaluation of Carbon-Nanotube-Reinforced Bioprintable Vascular Conduits,” Nanotechnology, 25(14), p. 145101. [CrossRef] [PubMed]
Lee, V. K., Kim, D. Y., Ngo, H., Lee, Y., Seo, L., Yoo, S.-S., Vincent, P. A., and Dai, G., 2014, “Creating Perfused Functional Vascular Channels Using 3D Bio-Printing Technology,” Biomaterials, 35(28), pp. 8092–8102. [CrossRef] [PubMed]
Kolesky, D., Truby, R., Gladman, A., Busbee, T., Homan, K., and Lewis, J., 2014, “Bioprinting: 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs,” Adv. Mater., 26(19), pp. 2966–2966. [CrossRef]
Wu, W., DeConinck, A., and Lewis, J., 2011, “Omnidirectional Printing of 3D Microvascular Networks,” Adv. Mater., 23(24), pp. H178–H183. [CrossRef] [PubMed]
Miller, J., Stevens, K., Yang, M., Baker, B., Nguyen, D.-H., Cohen, D., Toro, E., Chen, A., Galie, P., Yu, X., Chaturvedi, R., Bhatia, S., and Chen, C., 2012, “Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-Dimensional Tissues,” Nat. Mater., 11(9), pp. 768–774. [CrossRef] [PubMed]
Bertassoni, L., Cardoso, J., Manoharan, V., Cristino, A., Bhise, N., Araujo, W., Zorlutuna, P., Vrana, N., Ghaemmaghami, A., Dokmeci, M., and Khademhosseini, A., 2014, “Direct-Write Bioprinting of Cell-Laden Methacrylated Gelatin Hydrogels,” Biofabrication, 6(2), p. 024105. [CrossRef] [PubMed]
Bertassoni, L., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A., Barabaschi, G., Demarchi, D., Dokmeci, M., Yang, Y., and Khademhosseini, A., 2014, “Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs,” Lab Chip, 14(13), pp. 2202–2211. [CrossRef] [PubMed]
Ozturk, M., Lee, V., Zhao, L., Dai, G., and Intes, X., 2013, “Mesoscopic Fluorescence Molecular Tomography of Reporter Genes in Bioprinted Thick Tissue,” J. Biomed. Opt., 18(10), p. 100501. [CrossRef] [PubMed]
Zhao, L., Lee, V. K., Yoo, S.-S., Dai, G., and Intes, X., 2012, “The Integration of 3-D Cell Printing and Mesoscopic Fluorescence Molecular Tomography of Vascular Constructs Within Thick Hydrogel Scaffolds,” Biomaterials, 33(21), pp. 5325–5332. [CrossRef] [PubMed]
Lee, V., Lanzi, A., Ngo, H., Yoo, S.-S., Vincent, P., and Dai, G., 2014, “Generation of Multi-Scale Vascular Network System Within 3D Hydrogel Using 3D Bio-Printing Technology,” Cell. Mol. Bioeng., 7(3), pp. 1–13. [CrossRef] [PubMed]
Yu, Y., Zhang, Y., Martin, J., and Ozbolat, I., 2013, “Evaluation of Cell Viability and Functionality in Vessel-Like Bioprintable Cell-Laden Tubular Channels,” Biomech. Eng., 135(9), p. 091011. [CrossRef]
Tirella, A., Vozzi, F.,Vozzi, G., and Ahluwalia, A., 2011, “PAM2 (Piston Assisted Microsyringe): A New Rapid Prototyping Technique for Biofabrication of Cell Incorporated Scaffolds,” Tissue Eng., Part C, 17(2), pp. 229–237. [CrossRef]
Jos, M., Jetze, V., Ferry, P., Tomasz, J., Wim, E., Wouter, J., Jürgen, G., and Dietmar, W., 2013, “25th Anniversary Article: Engineering Hydrogels for Biofabrication,” Adv. Mater., 25(36), pp. 5011–5028. [CrossRef] [PubMed]
Wu, P., Ringeisen, B., Callahan, J., Brooks, M., Bubb, D., Wu, H., Piqué, A., Spargo, B., McGill, R., and Chrisey, D., 2001, “The Deposition, Structure, Patterned Position, and Activity of Biomaterial Thin-Films by Matrix-Assisted Pulsed-Laser Evaporation (MAPLE) and MAPLE Direct Write,” Thin Solid Films, 398(1), pp. 607–614. [CrossRef]
Raof, N., Schiele, N., Xie, Y., Chrisey, D., and Corr, D., 2011, “The Maintenance of Pluripotency Following Laser Direct-Write of Mouse Embryonic Stem Cells,” Biomaterials, 32(7), pp. 1802–1808. [CrossRef] [PubMed]
Keriquel, V., Guillemot, F., Arnault, I., Guillotin, B., Miraux, S., Amedee, J., Fricain, J., and Catros, S., 2010, “In Vivo Bioprinting for Computer- and Robotic-Assisted Medical Intervention: Preliminary Study in Mice,” Biofabrication, 2(1), p. 014101. [CrossRef] [PubMed]
Kattamis, N., McDaniel, N., Bernhard, S., and Arnold, C., 2009, “Laser Direct Write Printing of Sensitive and Robust Light Emitting Organic Molecules,” Appl. Phys. Lett., 94(10), p. 103306. [CrossRef]
Colina, M., Duocastella, M., Fernandez-Pradas, J., Serra, P., and Morenza, J., 2006, “Laser-Induced Forward Transfer of Liquids: Study of the Droplet Ejection Process,” J. Appl. Phys., 99(8), p. 084909. [CrossRef]
Nahmias, Y., and Odde, J., 2006, “Micropatterning of Living Cells by Laser-Guided Direct Writing: Application to Fabrication of Hepatic-Endothelial Sinusoid-Like Structures,” Nat. Protoc., 1(5), pp. 2288–2296. [CrossRef] [PubMed]
Boland, T., Tao, X., Damon, B., Manley, B., Kesari, P., Jalota, S., and Bhaduri, S., 2007, “Drop-on-Demand Printing of Cells and Materials for Designer Tissue Constructs,” Mater. Sci. Eng., Part C, 27(3), pp. 372–376. [CrossRef]
Nishiyama, Y., Nakamura, M., Henmi, C., Yamaguchi, K., Mochizuki, S., Nakagawa, H., Tsui, B. M. W., and Hoffman, J., 2007, “Fabrication of 3D Cell Supporting Structures With Multi-Materials Using the Bio-Printer,” ASME Paper No. MSEC2007-31064. [CrossRef]
Roth, E., Xu, T., Das, M.,Gregory, C.,Hickman, J., and Boland, T., 2004, “Inkjet Printing for High-Throughput Cell Patterning,” Biomaterials, 25(17), pp. 3707–3715. [CrossRef] [PubMed]
Saunders, R., Gough, J., and Derby, B., 2008, “Delivery of Human Fibroblast Cells by Piezoelectric Drop-on-Demand Inkjet Printing,” Biomaterials, 29(2), pp. 193–203. [CrossRef] [PubMed]
Xu, T., Kincaid, H., Atala, A., and Yoo, J., 2008, “High-Throughput Production of Single-Cell Microparticles Using an Inkjet Printing Technology,” ASME J. Manuf. Sci. Eng., 130(2), p. 021017. [CrossRef]
Xu, W., Wang, H., Yan, N., Zheng, W., Xiong, Z., Lin, F., Wu, D., and Zhang, J., 2007, “Rapid Prototyping Three-Dimensional Cell/Gelatin/Fibrinogen Constructs for Medical Regeneration,” J. Bioact. Compat. Polym., 22(4), pp. 363–377. [CrossRef]
Demirci, U., and Montesano, G., 2007, “Cell Encapsulating Droplet Vitrification,” Lab Chip, 7(11), pp. 1428–1433. [CrossRef] [PubMed]
Song, S., Adler, D., Xu, F., Kayaalp, E., Nureddin, A., Raymond, A., Maas, R., and Demirci, U., 2010, “Vitrification and Levitation of a Liquid Droplet on Liquid Nitrogen,” Proc. Natl. Acad. Sci. U.S.A., 107(10), pp. 4596–4600. [CrossRef] [PubMed]
Moon, S., Kim, Y., Dong, L., Lombardi, M., Haeggstrom, E., Jensen, R., Hsiao, L., and Demirci, H., 2011, “Drop-on-Demand Single Cell Isolation and Total RNA Analysis,” PLoS ONE, 6(3), p. 17455. [CrossRef]
Censi, R., Schuurman, W., Malda, J., Di Dato, G., Burgisser, P., Dhert, W., Van Nostrum, C., Di Martino, P., Vermonden, T., and Hennink, E., 2011, “Printable Photopolymerizable Thermosensitive p(HPMA-lactate)-PEG Hydrogel for Tissue Engineering,” Adv. Funct. Mater., 21(10), pp. 1833–1842. [CrossRef]
Cohen, D., Malone, E., Lipson, H., and Bonassar, L., 2006, “Direct Freeform Fabrication of Seeded Hydrogels in Arbitrary Geometries,” Tissue Eng., 12(5), pp. 1325–1335. [CrossRef] [PubMed]
Yan, Y., Wang, X., Xiong, Z., Liu, H., Liu, F., Lin, F., Wu, R., Zhang, R., and Lu, Q., 2005, “Direct Construction of a Three-Dimensional Structure With Cells and Hydrogel,” J. Bioact. Compat. Polym., 20(3), pp. 259–269. [CrossRef]
Wang, X., Yan, Y., Pan, Y., Xiong, Z., Liu, H., Cheng, B., Liu, F., Lin, F., Wu, R., Zhang, R., and Lu, Q., 2006, “Generation of Three-Dimensional Hepatocyte/Gelatin Structures With Rapid Prototyping System,” Tissue Eng., 12(1), pp. 83–90. [CrossRef] [PubMed]
Fedorovich, N., De Wijn, J., Verbout, A., Alblas, J., and Dhert, W., 2008, “Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing,” Tissue Eng., Part A, 14(1), pp. 127–133. [CrossRef]
Li, S., Yan, Y., Xiong, Z., Weng, C., Zhang, R., and Wang, X., 2009, “Gradient Hydrogel Construct Based on an Improved Cell Assembling System,” J. Bioact. Compat. Polym., 24(1), pp. 84–99. [CrossRef]
Pescosolido, L., Schuurman, W.,Malda, J., Matricardi, P.,Alhaique, F., Coviello, T.,Weeren, P., Dhert, W., Hennink, W., and Vermonden, T., 2011, “Hyaluronic Acid and Dextran Based Semi-IPN Hydrogels as Biomaterials for Bioprinting,” Biomacromolecules, 12(5), pp. 1831–1838. [CrossRef] [PubMed]
Johnson, H., Sina, N., Zhilian, Y., Robert, K., Anita, Q., Simon, E., and Gordon, G., 2013, “Bio-Ink Properties and Printability for Extrusion Printing Living Cells,” Biomater. Sci., 1(7), pp. 763–773. [CrossRef]
Patterson, J., Martino, M., and Hubbell, A., 2010, “Biomimetic Materials in Tissue Engineering,” Mater. Today, 13(1–2), pp. 14–22. [CrossRef]
Hunt, N., and Grover, L., 2010, “Cell Encapsulation Using Biopolymer Gels for Regenerative Medicine,” Biotechnol. Lett., 32(6), pp. 733–742. [CrossRef] [PubMed]
Spiller, K., Maher, S., and Lowman, A., 2011, “Hydrogels for the Repair of Articular Cartilage Defects,” Tissue Eng., Part B, 17(4), pp. 281–299. [CrossRef]
Dash, M., Chiellini, F., Ottenbrite, R., and Chiellini, E., 2011, “Chitosan—A Versatile Semi-Synthetic Polymer in Biomedical Applications,” Prog. Polym. Sci., 36(8), pp. 981–1014. [CrossRef]
Censi, R. S. W., Malda, J., di Dato, G., Burgisser, P., Dhert, W., van Nostrum, C., di Martino, P., Vermonden, T., and Hennink, W., 2011, “A Printable Photopolymerizable Thermosensitive p(HPMAm-Lactate)-PEG Hydrogel for Tissue Engineering,” Adv. Funct. Mater., 21(10), pp. 1833–1842. [CrossRef]
Fedorovich, E., De Wijn, R., Verbout, J., Alblas, J., and Dhert, J., 2008, “Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing,” Tissue Eng., Part A, 14(1), pp. 127–133. [CrossRef]
Fedorovich, N., Swennen, I., Girones, J., Moroni, V., Blitterswijk, C., Schacht, E., Alblas, J., and Dhert, W., 2009, “Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing Applications,” Biomacromolecules, 10(7), pp. 1689–1696. [CrossRef] [PubMed]
Lutolf, M., Gilbert, P., and Blau, H., 2009, “Designing Materials to Direct Stem-Cell Fate,” Nature, 462(7272), pp. 433–441. [CrossRef] [PubMed]
Nuttelman, C., Rice, M., Rydholm, A., Salinas, C., Shah, D., and Anseth, K., 2008, “Macromolecular Monomers for the Synthesis of Hydrogel Niches and Their Application in Cell Encapsulation and Tissue Engineering,” Prog. Polym. Sci., 33(2), pp. 167–179. [CrossRef] [PubMed]
Nicodemus, G., and Bryant, S., 2008, “Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications,” Tissue Eng., Part B, 14(2), pp. 149–165. [CrossRef]
Lutolf, P., Lauer-Fields, L., Schmoekel, G., Metters, T., Weber, E., Fields, B., and Hubbell, A., 2003, “Synthetic Matrix Metalloproteinasesensitive Hydrogels for the Conduction of Tissue Regeneration: Engineering Cell-Invasion Characteristics,” Proc. Natl. Acad. Sci. U.S.A, 100(9), pp. 5413–5418. [CrossRef] [PubMed]
Rizzi, C., Ehrbar, M., Halstenberg, S., Raeber, P., Schmoekel, G., Hagenmuller, H., Muller, R., Weber, E., and Hubbell, A., 2006, “Recombinant Protein-Co-PEG Networks as Cell-Adhesive and Proteolytically Degradable Hydrogel Matrixes. Part II: Biofunctional Characteristics,” Biomacromolecules, 7(11), pp. 3019–3029. [CrossRef] [PubMed]
Tirella, A., Orsini, A., Vozzi, G., and Ahluwalia, A., 2009, “A Phase Diagram for Microfabrication of Geometrically Controlled Hydrogel Scaffolds,” Biofabrication, 1(4), p. 045002. [CrossRef] [PubMed]
Khalil, S., and Sun, W., 2009, “Bioprinting Endothelial Cells With Alginate for 3D Tissue Constructs,” Biomech. Eng., 131(11), p. 111002. [CrossRef]
Murphy, S., Skardal, A., and Atala, A., 2013, “Evaluation of Hydrogels for Bio-Printing Applications,” J. Biomed. Mater. Res., Part A, 101A(1), pp. 272–284. [CrossRef]
Mironov, V., Visconti, P., Kasyanov, V., Forgacs, G., Drake, J., and Markwald, R., 2009, “Organ Printing: Tissue Spheroids as Building Blocks,” Biomaterials30(12), pp. 2164–2174. [CrossRef] [PubMed]
Whitesides, G., and Boncheva, M., 2002, “Beyond Molecules: Self-Assembly of Mesoscopic and Macroscopic Components,” Proc. Natl. Acad. Sci. U.S.A., 99(8), pp. 4769–4774. [CrossRef] [PubMed]
Whitesides, G., and Grzybowski, B., 2002, “Self-Assembly at All Scales,” Science, 295(5564), pp. 2418–2421. [CrossRef] [PubMed]
John, M., Albert, P., Andrew, O., and Aaron, J., 1977, “A Simplified Method for Production and Growth of Multicellular Tumor Spheroids,” Cancer Res., 37(1), pp. 3639–3643. [PubMed]
Savas, T., and Utkan, D., 2013, “Bioprinting for Stem Cell Research,” Trends Biotechnol., 31(1), pp. 10–19. [CrossRef] [PubMed]
Urich, E., Patsch, C., Aigner, S., Graf, M., Iacone, R., and Freskgard, P., 2013, “Multicellular Self-Assembled Spheroidal Model of the Blood Brain Barrier,” Sci. Rep., 3(1500), pp. 1–8. [CrossRef]
Lin, Z., and Chang, Y., 2008, “Recent Advances in Three-Dimensional Multicellular Spheroid Culture for Biomedical Research,” Biotechnol. J., 3(9–10), pp. 1172–1184. [CrossRef] [PubMed]
Marga, F., Neagu, A., Kosztin, I., and Forgacs, G., 2007, “Developmental Biology and Tissue Engineering,” Birth Defects Res., 81(4), pp. 320–328. [CrossRef]
Rezende, R., Pereira, F., Kasyanov, V., Kemmoku, T., Maia, I., da Silva, J., and Mironov, V., 2013, “Scalable Biofabrication of Tissue Spheroids for Organ Printing,” Procedia CIRP, 5(1), pp. 276–281. [CrossRef]
Owens, C., Marga, F., Forgacs, G., and Heesch, C., 2013, “Biofabrication and Testing of a Fully Cellular Nerve Graft,” Biofabrication, 5(4), p. 045007. [CrossRef] [PubMed]
Pati, F., Jang, J., Ha, D.-H., Won Kim, S., Rhie, J.-W., Shim, J.-H., Kim, D.-H., and Cho, D.-W., 2014, “Printing Three-Dimensional Tissue Analogues With Decellularized Extracellular Matrix Bioink,” Nat. Commun., 5(3935), pp. 1–11. [CrossRef]
Beaman, J., Antwood, C., Bergman, T. L., Bourell, D., Hollister, S., and Rosen, D., 2004, “Additive/Subtractive Manufacturing Research and Development in Europe,” Technical Report No. 21224, World Technology Evaluation Center, Inc., Baltimore, MD.
Landers, R., Hubner, U., Schmelzeisen, R., and Muelhaupt, R., 2002, “Rapid Prototyping of Scaffolds Derived From Thermo Reversible Hydrogels and Tailored for Applications in Tissue Engineering,” Biomaterials, 23(23), pp. 4437–4447. [CrossRef] [PubMed]
Manoj, V., 2013, “The Journey From Cell Culture to Bioprinting and Beyond,” H+ Magazine, Mar., p. 1.
Tao, X., Rodriguez-Devora, J. I., Reyna-Sariano, D., Bhuyan, M., Zhu, L., Wang, K., and Yuan, Y., 2013, “Principles of Bioprinting Technology,” Regenerative Medicine Applications in Organ Transplantation, Elsevier, San Diego, CA, pp. 67–79.
Mironov, V., Zhang, J., Gentile, C., Brakke, K., Trusk, T., Jakab, K., Forgacs, G., Kasyanov, V., Visconti, R., and Markwald, R., 2009, “Designer ‘Blueprint’ for Vascular Trees: Morphology Evolution of Vascular Tissue Constructs,” Virtual Phys. Prototyping, 4(2), pp. 63–74. [CrossRef]
Visconti, P., Kasyanov, V., Gentile, C., Zhang, J., Markwald, R., and Mironov, V., 2010, “Towards Organ Printing: Engineering an Intra-Organ Branched Vascular Tree,” Expert Opin. Biol. Ther., 10(3), pp. 409–420. [CrossRef] [PubMed]
Coatnye, S., Gandhi, B., Park, B., Dzilno, D., Tapia, E., Kamarthy, G., and Sidhu, I., University of California, B., 2013, "3D Bio-Printing," Fung Technical Report No. 2013.04.17.
2014, “Palmetto Printer Manuals,” http://regmed.musc.edu/atbc/equipment.html
Kwan, J., 2013, “Design of Electronics for a High-Resolution, Multi-Material, and Modular 3D Printer,” Master thesis, Massachusetts Institute of Technology, Cambridge, MA.
Malone, E., and Lipson, H., 2007, “Fab@Home: The Personal Desktop Fabricator Kit,” Rapid Prototyping, 13(4), pp. 245–255. [CrossRef]
Song, S., Choi, J., Park, Y., Lee, J., Hong, S., and Sun, K., 2010, “A Three-Dimensional Bioprinting System for Use With a Hydrogel-Based Biomaterial and Printing Parameter Characterization,” Artif. Organ, 34(11), pp. 1044–1048. [CrossRef]
Ozbolat, I., Chen, H., and Yu, Y., 2014, “Development of Multi-Arm Bioprinter for Hybrid Biofabrication of Tissue Engineering Constructs,” Rob. Comput.-Integr. Manuf., 30(3), pp. 295–304. [CrossRef]
Levato, R., Visser, J., Planell, J. A., Engel, E., Malda, J., and Mateos-Timoneda, M. A., 2014, “Biofabrication of Tissue Constructs by 3D Bioprinting of Cell-Laden Microcarriers,” Biofabrication, 6(3), p. 035020. [CrossRef] [PubMed]
Cohen, D., Malone, E., Lipson, H., and Bonassar, L., 2006, “Direct Freeform Fabrication of Seeded Hydrogels in Arbitrary Geometries,” Tissue Eng., 12(5), pp. 1325–1335. [CrossRef] [PubMed]
Dhariwala, B., Hunt, E., and Boland, T., 2004 “Rapid Prototyping of Tissue-Engineering Constructs Using Photopolymerizable Hydrogels and Stereolithography,” Tissue Eng., 10(9–10), pp. 1316–1322. [CrossRef] [PubMed]
Liu, T., Chen, A., Cho, L., Jadin, K., Sah, R., DeLong, S., West, J., and Bhatia, S., 2007, “Fabrication of 3D Hepatic Tissues by Additive Photo Patterning of Cellular Hydrogels,” FASEB J., 21(3), pp. 790–801. [CrossRef] [PubMed]
Wang, X., Yan, Y., and Zhang, R., 2007, “Rapid Prototyping as a Tool for Manufacturing Bioartificial Liver,” Trends Biotechnol., 25(11), pp. 505–513. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Classification of bioprinting techniques

Grahic Jump Location
Fig. 2

Inkjet-based bioprinting: (a) a schematic of thermal-based inkjet bioprinting, (b) a schematic of piezoelectric-based inkjet bioprinting, (c) microscopic top views of a complete 3D multicell “pie” construct using an inkjet-based bioprinter (courtesy of Elsevier [54]), and (d) a tubular structure of the printed human microvasculature using an inkjet-based bioprinter (courtesy of Elsevier [57])

Grahic Jump Location
Fig. 3

Laser-based bioprinting: (a) a schematic of laser-based bioprinting (LDW and LAB), (b) different cell types printed in close contact to each other with a high cell concentration (courtesy of Elsevier [74]), (c) chondrocytes stained with Calcein, and (d) osteoblast cells stained with Dil-LDL

Grahic Jump Location
Fig. 4

Extrusion-based bioprinting: (a) a schematic of extrusion-based bioprinting technique, (b) a cell-laden structure consisting of chondrocytes and osteoblasts was produced using an extrusion-based bioprinter (courtesy of Jin-Hyung Shim)

Grahic Jump Location
Fig. 5

Cell-aggregate-based bioink: (a) tissue spheroids (150 μm in diameter): human primary brain endothelial cells (outermost layer), human primary pericytes cells (middle layer), human primary astrocytes cells (hpAs) (innermost layer), and the complete spheroid composed of all three cell types (courtesy of Elsevier [143]), (b) cell pellet in a syringe, and (c) tissue strands

Grahic Jump Location
Fig. 6

Bioprinters: (a) Palmetto Bioprinter (courtesy of Michael J. Yost), (b) MtoBS (courtesy of Jin-Hyung Shim), and (c) the MABP

Grahic Jump Location
Fig. 7

Commercial bioprinters: (a) NovoGen MMX Bioprinter (courtesy of Organovo, San Diego, CA), (b) fourth generation 3D Bioplotter (courtesy of Envisiontec GmbH, Gladbeck, Germany), and (c) Sciperio/nScrypt (courtesy of BioAssembly Tool, Orlando, FL)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In