0
Research Papers

Porogen Templating Processes: An Overview

[+] Author and Article Information
Yifeng Hong

School of Materials Science and Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

Jack G. Zhou

Department of Mechanical
Engineering and Mechanics,
Drexel University,
Philadelphia, PA 19104

Donggang Yao

School of Materials Science and Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: yao@gatech.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. Manuscript received August 6, 2013; final manuscript received February 14, 2014; published online March 26, 2014. Assoc. Editor: Wei Li.

J. Manuf. Sci. Eng 136(3), 031013 (Mar 26, 2014) (17 pages) Paper No: MANU-13-1304; doi: 10.1115/1.4026899 History: Received August 06, 2013; Revised February 14, 2014

Porous materials with well-defined pore shapes, sizes and distributions are highly desired in many emerging applications, particularly for biomedical materials and devices. However, conventional methods for processing porous materials only demonstrated limited capability in morphological control. One promising solution is the porogen templating process, where a structured porogen pattern is created first and subsequently used as a template or mold for generation of the desired porous material. Particularly, with solid freeform fabrication, porogen templates having complex internal structures can be additively fabricated, and they can then be used as molds for molding of porous materials and devices. This article attempts to offer a constructive overview on the state of the art of porogen patterning and inverse molding, with the goal of explaining the working mechanisms and providing unbiased accounts of the pros and cons of existing techniques and process variants. The article further intends to provide a fundamental understanding of the constituent elements and corresponding building blocks in porogen templating processes. An increased understanding of these elements will facilitate the development of more capable new processes.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Dhandayuthapani, B., Yoshida, Y., Maekawa, T., and Kumar, D. S., 2011, “Polymeric Scaffolds in Tissue Engineering Application: A Review,” Int. J. Polym. Sci., 2011, p. 290602. [CrossRef]
Landy, B. C., Van Gordon, S. B., McFetridge, P. S., Sikavitsas, V. I., and Jarman-Smith, M., 2013, “Mechanical and in vitro Investigation of a Porous PEEK Foam for Medical Device Implants,” J. Appl. Biomater. Funct. Mater., 11(1), pp. 35–44. [CrossRef]
Liu, Z. H., Yi, Y., Gauczinski, J., Xu, H. P., Schonhoff, M., and Zhang, X., 2011, “Surface Molecular Imprinted Layer-by-Layer Film Attached to a Porous Membrane for Selective Filtration,” Langmuir, 27(19), pp. 11806–11812. [CrossRef] [PubMed]
Garcia-Belmonte, G., Bisquert, J., Pereira, E. C., and Fabregat-Santiago, F., 2001, “Anomalous Transport on Polymeric Porous Film Electrodes in the Dopant-Induced Insulator-to-Conductor Transition Analyzed by Electrochemical Impedance,” Appl. Phys. Lett., 78(13), pp. 1885–1887. [CrossRef]
Fritz Ullmann, W. G., Yamamoto, Y. S., Campbell, F. T., 1985, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany.
Mark, H. F., and Kroschwitz, J. I., 1985, Encyclopedia of Polymer Science and Engineering,” 2nd ed., Wiley, New York.
Sharma, A. C., and Borovik, A. S., 2000, “Design, Synthesis, and Characterization of Templated Metal Sites in Porous Organic Hosts: Application to Reversible Dioxygen Binding,” J. Am. Chem. Soc., 122(37), pp. 8946–8955. [CrossRef]
Lu, W. G., Yuan, D. Q., Zhao, D., Schilling, C. I., Plietzsch, O., Muller, T., Brase, S., Guenther, J., Blumel, J., Krishna, R., Li, Z., and Zhou, H. C., 2010, “Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation,” Chem. Mater., 22(21), pp. 5964–5972. [CrossRef]
Simms, H. M., Brotherton, C. M., Good, B. T., Davis, R. H., Anseth, K. S., and Bowman, C. N., 2005, “In Situ Fabrication of Macroporous Polymer Networks Within Microfluidic Devices by Living Radical Photopolymerization and Leaching,” Lab Chip, 5(2), pp. 151–157. [CrossRef] [PubMed]
Hutmacher, D. W., 2001, “Scaffold Design and Fabrication Technologies for Engineering Tissues—State of the Art and Future Perspectives,” J. Biomater. Sci., Polym. Ed., 12(1), pp. 107–124. [CrossRef]
Yan, X., and Gu, P., 1996, “A Review of Rapid Prototyping Technologies and Systems,” Comput.-Aided Des., 28(4), pp. 307–318. [CrossRef]
Medellin-Castillo, H. I., and Torres, J. E. P., 2010, “Rapid Prototyping and Manufacturing: A Review of Current Technologies,” IMECE2009, Vol. 4, pp. 609–621.
Lan, H., 2009, “Web-Based Rapid Prototyping and Manufacturing Systems: A Review,” Comput. Ind., 60(9), pp. 643–656. [CrossRef]
Yang, D. Y., Lim, T. W., Son, Y., Kong, H. J., Lee, K. S., Kim, D. P., and Park, S. H., 2007, “Additive Process Using Femto-Second Laser for Manufacturing Three-Dimensional Nano/Micro-Structures,” Int. J. Precis. Eng. Manuf., 8(4), pp. 63–69.
Peltola, S. M., Melchels, F. P. W., Grijpma, D. W., and Kellomaki, M., 2008, “A Review of Rapid Prototyping Techniques for Tissue Engineering Purposes,” Ann. Med., 40(4), pp. 268–280. [CrossRef] [PubMed]
Mondrinos, M. J., Dembzynski, R., Lu, L., Byrapogu, V. K. C., Wootton, D. M., Lelkes, P. I., and Zhou, J., 2006, “Porogen-Based Solid Freeform Fabrication of Polycaprolactone-Calcium Phosphate Scaffolds for Tissue Engineering,” Biomaterials, 27(25), pp. 4399–4408. [CrossRef] [PubMed]
Lu, L., Zhou, J., Mondrinos, M., Lelkes, P., and Wootton, D., 2008, Porogen Based Solid Freeform Fabrication of Polycaprolactone-Calcium Phosphate Scaffolds for Tissue Engineering, Virtual Rapid Manufacturing, Taylor and Francis, London, pp. 87–96.
Kang, H. W., and Cho, D. W., 2012, “Development of an Indirect Stereolithography Technology for Scaffold Fabrication With a Wide Range of Biomaterial Selectivity,” Tissue Eng. Part C, 18(9), pp. 719–729. [CrossRef]
Hollister, S. J., Maddox, R. D., and Taboas, J. M., 2002, “Optimal Design and Fabrication of Scaffolds to Mimic Tissue Properties and Satisfy Biological Constraints,” Biomaterials, 23(20), pp. 4095–4103. [CrossRef] [PubMed]
Lee, M., Dunn, J. C. Y., and Wu, B. M., 2005, “Scaffold Fabrication by Indirect Three-Dimensional Printing,” Biomaterials, 26(20), pp. 4281–4289. [CrossRef] [PubMed]
Taboas, J. M., Maddox, R. D., Krebsbach, P. H., and Hollister, S. J., 2003, “Indirect Solid Free Form Fabrication of Local and Global Porous, Biomimetic and Composite 3D Polymer-Ceramic Scaffolds,” Biomaterials, 24(1), pp. 181–194. [CrossRef] [PubMed]
Hong, Y., Zhou, J. G., and Yao, D., 2013, “Fabrication of Interconnected Porous Elastomers by A Microsphere-Templating Process,” Adv. Polym. Technol., 31(1), pp. 21330–21341. [CrossRef]
Uchida, T., Oura, H., Ikeda, S., Arai, F., Negor, M., and Fukuda, T., 2008, “Fabrication of Biodegradable Scaffolds by Use of Self-Assembled Magnetic Sugar Particles as a Casting Template,” 2008 IEEE International Conference on Robotics and Automation, Vols. 1–9, pp. 413–418.
Esposito, E., Cortesi, R., and Nastruzzi, C., 1996, “Gelatin Microspheres: Influence of Preparation Parameters and Thermal Treatment on Chemico-Physical and Biopharmaceutical Properties,” Biomaterials, 17(20), pp. 2009–2020. [CrossRef] [PubMed]
Blaker, J. J., Knowles, J. C., and Day.R. M., 2008, “Novel Fabrication Techniques to Produce Microspheres by Thermally Induced Phase Separation for Tissue Engineering and Drug Delivery,” Acta Biomater., 4(2), pp. 264–272. [CrossRef] [PubMed]
Giannatsis, J., and Dedoussis, V., 2009, “Additive Fabrication Technologies Applied to Medicine and Health Care: A Review,” Int. J. Adv. Manuf. Technol., 40(1-2), pp. 116–127. [CrossRef]
Tadmor, Z., 2002, “Machine Invention, Innovation, and Elementary Steps,” Adv. Polym. Technol., 21(2), pp. 87–97. [CrossRef]
Seol, Y. J., Kang, T. Y., and Cho, D. W., 2012, “Solid Freeform Fabrication Technology Applied to Tissue Engineering With Various Biomaterials,” Soft Matter, 8(6), pp. 1730–1735. [CrossRef]
Liu, C., Xia, Z., and CzernuszkaJ. T., 2007, “Design and Development of Three-Dimensional Scaffolds for Tissue Engineering,” Chem. Eng. Res. Des., 85(A7), pp. 1051–1064. [CrossRef]
Weigel, T., Schinkel, G., and Lendlein, A., 2006, “Design and Preparation of Polymeric Scaffolds for Tissue Engineering,” Expert Rev. Med. Devices, 3(6), pp. 835–851. [CrossRef] [PubMed]
Zhou, J. G., and Lu, L., 2011, “Biomimetic Structured Porogen Freeform Fabrication System for Tissue Engineering,” On Biomimetics, L. D.Pramatarova, ed., InTech., Rijeka, Croatia, pp. 53–90.
Sachlos, E., Reis, N., Ainsley, C., Derby, B., and Czernuszka, J. T., 2003, “Novel Collagen Scaffolds With Predefined Internal Morphology Made by Solid Freeform Fabrication,” Biomaterials, 24(8), pp. 1487–1497. [CrossRef] [PubMed]
Yeong, W. Y., Chua, C. K., Leong, K. F., Chandrasekaran, M., and Lee, M. W., 2006, “Indirect Fabrication of Collagen Scaffold Based on Inkjet Printing Technique,” Rapid Prototyping J., 12(4), pp. 229–237. [CrossRef]
Lu, L., Zhang, Q. W.,Wootton, D., Lelkes, P. I., and Zhou, J., 2010, “A Novel Sucrose Porogen-Based Solid Freeform Fabrication System for Bone Scaffold Manufacturing,” Rapid Prototyping J., 16(5), pp. 365–376. [CrossRef]
Lu, L., Zhang, Q. W., Wootton, D., Chiou, R., Li, D. C., Lu, B. H., Lelkes, P., and Zhou, J., 2012, “Biocompatibility and Biodegradation Studies of PCL/beta-TCP Bone Tissue Scaffold Fabricated by Structural Porogen Method,” J. Mater. Sci.: Mater. Med., 23(9), pp. 2217–2226. [CrossRef] [PubMed]
Kawata, S., Sun, H. B., Tanaka, T., and Takada, K., 2001, “Finer Features for Functional Microdevices—Micromachines can be Created With Higher Resolution Using Two-Photon Absorption,” Nature, 412(6848), pp. 697–698. [CrossRef] [PubMed]
Lee, S. H., Moon, J. J., and West, J. L., 2008, “Three-Dimensional Micropatterning of Bioactive Hydrogels via Two-Photon Laser Scanning Photolithography for Guided 3D Cell Migration,” Biomaterials, 29(20), pp. 2962–2968. [CrossRef] [PubMed]
Tanodekaew, S., Channasanon, S., Kaewkong, P., and Uppanan, P., 2013, “PLA-HA Scaffolds, Preparation and Bioactivity,” 3rd International Conference on Tissue Engineering, P.Bartolo and P.Fernandes, eds., Elsevier Science Bv, Amsterdam, pp. 144–149.
Melissinaki, V., Gill, A. A., Ortega, I., Vamvakaki, M., Ranella, A., Haycock, J. W., Fotakis, C., Farsari, M., and Claeyssens, F., 2011, “Direct Laser Writing of 3D Scaffolds for Neural Tissue Engineering Applications,” Biofabrication.3(4), p. 045005. [CrossRef] [PubMed]
Malinauskas, M., Danilevicius, P., Baltriukiene, D., Rutkauskas, M., Zukauskas, A., Kairyte, Z., Bickauskaite, G., Purlys, V., Paipulas, D., Bukelskiene, V., and Gadonas, R., 2010, “3D Artificial Polymeric Scaffolds for Stem Cell Growth Fabricated by Femtosecond Laser,” Lithuanian J. Phys., 50(1), pp. 75–82. [CrossRef]
Engelhardt, S., Hoch, E., Borchers, K., Meyer, W., Kruger, H., Tovar, G. E. M., and Gillner, A., 2011, “Fabrication of 2D Protein Microstructures and 3D Polymer-Protein Hybrid Microstructures by Two-Photon Polymerization,” Biofabrication, 3(2), p. 025003. [CrossRef] [PubMed]
Lee, S. J., Kang, H. W., Park, J. K., Rhie, J. W., Hahn, S. K., and Cho,D. W., 2008, “Application of Microstereolithography in the Development of Three-Dimensional Cartilage Regeneration Scaffolds,” Biomed. Microdevices, 10(2), pp. 233–241. [CrossRef] [PubMed]
Johnson, D. W., Sherborne, C., Didsbury, M. P., Pateman, C., Cameron, N. R., and Claeyssens, F., 2013, “Macrostructuring of Emulsion-Templated Porous Polymers by 3D Laser Patterning,” Adv. Mater., 25(23), pp. 3178–3181. [CrossRef] [PubMed]
Ronca, A., Ambrosio, L., and Grijpma, D. W., 2013, “Preparation of Designed Poly(D,L-Lactide)/Nanosized Hydroxyapatite Composite Structures by Stereolithography,” Acta Biomater., 9(4), pp. 5989–5996. [CrossRef] [PubMed]
Liska, R., Schwager, F., Maier, C., Cano-Vives, R., and Stampfl, J., 2005, “Water-Soluble Photopolymers for Rapid Prototyping of Cellular Materials,” J. Appl. Polym. Sci., 97(6), pp. 2286–2298. [CrossRef]
Chu, T. M. G., Orton, D. G., Hollister, S. J., Feinberg, S. E., and Halloran, J. W., 2002, “Mechanical and in vivo Performance of Hydroxyapatite Implants With Controlled Architectures,” Biomaterials, 23(5), pp. 1283–1293. [CrossRef] [PubMed]
Chu, T. M. G., Halloran, J. W., Hollister, S. J., and Feinberg, S. E., 2001, “Hydroxyapatite Implants With Designed Internal Architecture,” J. Mater. Sci.: Mater. Med., 12(6), pp. 471–478. [CrossRef] [PubMed]
Li, X., Li, D. C., Lu, B. H., Tang, Y. P., Wang, L., and Wang, Z., 2005, “Design and Fabrication of CAP Scaffolds by Indirect Solid Free Form Fabrication,” Rapid Prototyping J., 11(5), pp. 312–318. [CrossRef]
Vacanti, J. P., Sodian, R., Sperling, J. S., Martin, D. P., Egozy, A., Stock, U., and Mayer, J. E., 2000, “Fabrication of a Trileaflet Heart Valve Scaffold From a Polyhydroxyalkanoate Biopolyester for Use in Tissue Engineering,” Tissue Eng., 6(2), pp. 183–188. [CrossRef] [PubMed]
Leung, L., Chan, C., Baek, S., and Naguib, H., 2008, “Comparison of Morphology and Mechanical Properties of PLGA Bioscaffolds,” Biomed. Mater., 3(2), p. 025006. [CrossRef] [PubMed]
Wagner, W. R., Baraniak, P. R., Nelson, D. M., Leeson, C. E., Katakam, A. K., Friz, J. L., Cress, D. E., Hong, Y., and Guan, J. J., 2011, “Spatial Control of Gene Expression Within a Scaffold by Localized Inducer Release,” Biomaterials, 32(11), pp. 3062–3071. [CrossRef] [PubMed]
Sadiasa, A., Nguyen, T. H., and Lee, B. T., 2014, “In vitro and in vivo Evaluation of Porous PCL-PLLA 3D Polymer Scaffolds Fabricated via Salt Leaching Method for Bone Tissue Engineering Applications,” J. Biomater. Sci., Polym. Ed., 25(2), pp. 150–167. [CrossRef]
Zhang, J. C., Wu, L. B., Jing, D. Y., and Ding, J. D., 2005, “A Comparative Study of Porous Scaffolds With Cubic and Spherical Macropores,” Polymer, 46(13), pp. 4979–4985. [CrossRef]
Tran, R. T., Naseri, E., Kolasnikov, A., Bai, X. C., and Yang, J., 2011, “A New Generation of Sodium Chloride Porogen for Tissue Engineering,” Biotechnol. Appl. Biochem., 58(5), pp. 335–344. [CrossRef] [PubMed]
Tang, G. W., Zhang, H., Zhao, Y. H., Zhang, Y., Li, X. L., and Yuan, X. Y., 2012, “Preparation of PLGA Scaffolds With Graded Pores by Using a Gelatin-Microsphere Template as Porogen,” J. Biomater. Sci., Polym. Ed., 23(17), pp. 2241–2257. [CrossRef]
Li, J. S., Yuan, X. Y., He, F., and Mak, A. F. T., 2008, “Hybrid Coating of Hydroxyapatite and Collagen Within Poly(D,L-Lactic-Co-Glycolic Acid) Scaffold,” J. Biomed. Mater. Res. Part B, 86B(2), pp. 381–388. [CrossRef]
Ma, Z. W., Gao, C. Y., Gong, Y. H., and Shen, J. C., 2003, “Paraffin Spheres as Porogen to Fabricate Poly(L-Lactic Acid) Scaffolds With Improved Cytocompatibility for Cartilage Tissue Engineering,” J. Biomed. Mater. Res. Part B, 67B(1), pp. 610–617. [CrossRef]
Ma, P. X., and Choi, J. W., 2001, “Biodegradable Polymer Scaffolds With Well-Defined Interconnected Spherical Pore Network,” Tissue Eng., 7(1), pp. 23–33. [CrossRef] [PubMed]
Guo, L. Y., Zhang, J. W., Zhao, J., Wang, J. X., Weng, J., and Zhang, C., 2011, “Preparation and Characterization of Porous Scaffolds With Favourable Interpore Connectivity,” J. Inorg. Mater., 26(1), pp. 17–21. [CrossRef]
Wei, G. B., and Ma, P. X., 2006, “Macroporous and Nanofibrous Polymer Scaffolds and Polymer/Bone-Like Apatite Composite Scaffolds Generated by Sugar Spheres,” J. Biomed. Mater. Res. Part A, 78A(2), pp. 306–315. [CrossRef]
Vaquette, C., Frochot, C., Rahouadj, R., and Wang, X., 2008, “An Innovative Method to Obtain Porous PLLA Scaffolds With Highly Spherical and Interconnected Pores,” J. Biomed. Mater. Res. Part B, 86B(1), pp. 9–17. [CrossRef]
Hou, Q. P., Grijpma, D. W., and Feijen, J., 2003, “Preparation of Interconnected Highly Porous Polymeric Structures by a Replication and Freeze-Drying Process,” J. Biomed. Mater. Res. Part B, 67B(2), pp. 732–740. [CrossRef]
Yang, Y., Zhao, J., Zhao, Y., Wen, L., Yuan, X., and Fan, Y., 2008, “Formation of Porous PLGA Scaffolds by a Combining Method of Thermally Induced Phase Separation and Porogen Leaching,” J. Appl. Polym. Sci., 109(2), pp. 1232–1241. [CrossRef]
Liu, X. H., Won, Y. J., and Ma, P. X., 2006, “Porogen-Induced Surface Modification of Nano-Fibrous Poly(L-Lactic Acid) Scaffolds for Tissue Engineering,” Biomaterials, 27(21), pp. 3980–3987. [CrossRef] [PubMed]
Thomson, R. C., Yaszemski, M. J., Powers, J. M., and Mikos, A. G., 1995, “Fabrication of Biodegradable Polymer Scaffolds to Engineer Trabecular Bone,” J. Biomater. Sci., Polym. Ed., 7(1), pp. 23–38. [CrossRef]
Thomson, R. C., Yaszemski, M. J., Powers, J. M., and Mikos, A. G., 1998, “Hydroxyapatite Fiber Reinforced Poly(Alpha-Hydroxy Ester) Foams for Bone Regeneration,” Biomaterials, 19(21), pp. 1935–1943. [CrossRef] [PubMed]
Ko, Y. G., Grice, S., Kawazoe, N., Tateishi, T., and Chen, G. P., 2010, “Preparation of Collagen-Glycosaminoglycan Sponges With Open Surface Porous Structures Using Ice Particulate Template Method,” Macromol. Biosci., 10(8), pp. 860–871. [CrossRef] [PubMed]
Ko, Y. G., Kawazoe, N., Tateishi, T., and Chen, G. P., 2010, “Preparation of Novel Collagen Sponges Using an Ice Particulate Template,” J. Bioact. Compat. Polym., 25(4), pp. 360–373. [CrossRef]
Lu, H. X., Ko, Y. G., Kawazoe, N., and Chen, G. P., 2010, “Cartilage Tissue Engineering Using Funnel-Like Collagen Sponges Prepared With Embossing Ice Particulate Templates,” Biomaterials, 31(22), pp. 5825–5835. [CrossRef] [PubMed]
Ko, Y. G., Oh, H. H., Kawazoe, N., Tateishi, T., and Chen, G. P., 2011, “Preparation of Open Porous Hyaluronic Acid Scaffolds for Tissue Engineering Using the Ice Particulate Template Method,” J. Biomater. Sci., Polym. Ed., 22(1-3), pp. 123–138. [CrossRef]
Freitas, S., Merkle, H. P., and Gander, B., 2005, “Microencapsulation by Solvent Extraction/Evaporation: Reviewing the State of the Art of Microsphere Preparation Process Technology,” J. Controlled Release, 102(2), pp. 313–332. [CrossRef]
Bigi, A., Boanini, E., Panzavolta, S., Roveri, N., and Rubini, K., 2002, “Bonelike Apatite Growth on Hydroxyapatite-Gelatin Sponges From Simulated Body Fluid,” J. Biomed. Mater. Res., 59(4), pp. 709–715. [CrossRef] [PubMed]
Liu, X., Smith, L. A., Hu, J., and Ma, P. X., 2009, “Biomimetic Nanofibrous Gelatin/Apatite Composite Scaffolds for Bone Tissue Engineering,” Biomaterials, 30(12), pp. 2252–2258. [CrossRef] [PubMed]
Zhou, Q. L., Gong, Y. H., and Gao, C. Y., 2005, “Microstructure and Mechanical Properties of Poly(L-Lactide) Scaffolds Fabricated by Gelatin Particle Leaching Method,” J. Appl. Polym. Sci., 98(3), pp. 1373–1379. [CrossRef]
Adhirajan, N., Shanmugasundaram, N., Shanmuganathan, S., and Babu, M., 2009, “Functionally Modified Gelatin Microspheres Impregnated Collagen Scaffold as Novel Wound Dressing to Attenuate the Proteases and Bacterial Growth,” Eur. J. Pharm. Sci., 36(2-3), pp. 235–245. [CrossRef] [PubMed]
Habraken, W., Boerman, O. C., Wolke, J. G. C., Mikos, A. G., and Jansen, J. A., 2009, “In vitro Growth Factor Release From Injectable Calcium Phosphate Cements Containing Gelatin Microspheres,” J. Biomed. Mater. Res. Part A, 91A(2), pp. 614–622. [CrossRef]
Kimura, Y., Tsuji, W., Yamashiro, H., Toi, M., Inamoto, T., and Tabata, Y., 2010, “In Situ Adipogenesis in Fat Tissue Augmented by Collagen Scaffold With Gelatin Microspheres Containing Basic Fibroblast Growth Factor,” J. Tissue Eng. Regener. Med., 4(1), pp. 55–61. [CrossRef]
Agrawal, C. M., Karande, T. S., and Ong, J. L., 2004, “Diffusion in Musculoskeletal Tissue Engineering Scaffolds: Design Issues Related to Porosity, Permeability, Architecture, and Nutrient Mixing,” Ann. Biomed. Eng., 32(12), pp. 1728–1743. [CrossRef] [PubMed]
Murphy, W. L., Dennis, R. G., Kileny, J. L., and Mooney, D. J., 2002, “Salt Fusion: An Approach to Improve Pore Interconnectivity Within Tissue Engineering Scaffolds,” Tissue Eng., 8(1), pp. 43–52. [CrossRef] [PubMed]
Chen, S., Baker, I., and Frost, H. J., 2013, “Surface Instability and Mass Transfer During the Bonding of Ice Spheres,” Philos. Mag., 93(23), pp. 3177–3193. [CrossRef]
Wei, G., and Ma, P. X., 2009, “Partially Nanofibrous Architecture of 3D Tissue Engineering Scaffolds,” Biomaterials, 30(32), pp. 6426–6434. [CrossRef] [PubMed]
Hong, Y., and Yao, D., 2013, “Mechanical Behavior of Porous Polysiloxane With Micropores Interconnected by Microchannels,” Polym. Eng. Sci., (in press). [CrossRef]
Pego, A. P., Poot, A. A., Grijpma, D. W., and Feijen, J., 2003, “Biodegradable Elastomeric Scaffolds for Soft Tissue Engineering,” J. Controlled Release, 87(1-3), pp. 69–79. [CrossRef]
Wu, L. B., and Ding, J. D., 2004, “In vitro Degradation of Three-Dimensional Porous Poly(D,L-Lactide-Co-Glycolide) Scaffolds for Tissue Engineering,” Biomaterials, 25(27), pp. 5821–5830. [CrossRef] [PubMed]
Malda, J., Woodfield, T. B. F., van der Vloodt, F., Wilson, C., Martens, D. E., Tramper, J., van Blitterswijk, C. A., and Riesle, J.2005, “The Effect of PEGT/PBT Scaffold Architecture on the Composition of Tissue Engineered Cartilage,” Biomaterials, 26(1), pp. 63–72. [CrossRef] [PubMed]
Santerre, J. P., Sharifpoor, S., Simmons, C. A., and Labow, R. S., 2010, “A Study of Vascular Smooth Muscle Cell Function Under Cyclic Mechanical Loading in a Polyurethane Scaffold With Optimized Porosity,” Acta Biomater., 6(11), pp. 4218–4228. [CrossRef] [PubMed]
Shokrolahi, F., Mirzadeh, H., Yeganeh, H., and Daliri, M., 2011, “Fabrication of Poly(Urethane Urea)-Based Scaffolds for Bone Tissue Engineering by a Combined Strategy of Using Compression Moulding and Particulate Leaching Methods,” Iranian Polym. J., 20(8), pp. 645–658.
Pan, Z., Qu, Z. H., Zhang, Z., Peng, R., Yan, C., and Ding, J. D., 2013, “Particle-Collision and Porogen-Leaching Technique to Fabricate Polymeric Porous Scaffolds With Microscale Roughness of Interior Surfaces,” Chin. J. Polym. Sci., 31(5), pp. 737–747. [CrossRef]
Yao, D. G., Zhang, W., and Zhou, J. G., 2009, “Controllable Growth of Gradient Porous Structures,” Biomacromolecules, 10(5), pp. 1282–1286. [CrossRef] [PubMed]
Miao, X. G., and Sun, D., 2010, “Graded/Gradient Porous Biomaterials,” Materials, 3(1), pp. 26–47. [CrossRef]
Werner, J., Linner-Krcmar, B., Friess, W., and Greil, P., 2002, “Mechanical Properties and in vitro Cell Compatibility of Hydroxyapatite Ceramics With Graded Pore Structure,” Biomaterials, 23(21), pp. 4285–4294. [CrossRef] [PubMed]
Wu, H., Wan, Y., Cao, X., Dalai, S., Wang, S., and Zhang, S., 2008, “Fabrication of Chitosan-g-Polycaprolactone Copolymer Scaffolds With Gradient Porous Microstructures,” Mater. Lett., 62(17-18), pp. 2733–2736. [CrossRef]
Gong, X. H., Tang, C. Y., Zhang, Y. G., Wong, C. T., Wu, S. P., and Liu, J. N., 2012, “Fabrication of Graded Macroporous Poly(Lactic Acid) Scaffold by a Progressive Solvent Casting/Porogen Leaching Approach,” J. Appl. Polym. Sci., 125(1), pp. 571–577. [CrossRef]
Iwata, M., Shimono, A., Kishiro, K., and Kunieda, Y., 1998, “Preparation of Porous Hydroxyapatite Materials With a Continuous Porosity Profile by Use of a Filtration Method,” J. Jpn. Inst. Met., 62(11), pp. 1088–1094.
Droschel, M., Hoffmann, M. J., Oberacker, R., von Both, H., Schaller, W., Yang, Y. Y., and Munz, D., 2000, “SiC-Ceramics With Tailored Porosity Gradients for Combustion Chambers,” Engineering Ceramics: Multifunctional Properties—New Perspectives, P.Sajgalik and Z.Lences, eds., Trans Tech Publications, Ltd., Zurich, Switzerland, pp. 149–162.
Miao, X., Hu, Y., Liu, J., Tio, B., Cheang, P., and Khor, K. A., 2003, “Highly Interconnected and Functionally Graded Porous Bioceramics,” Bioceramics 15, B.BenNissan, D.Sher, and W.Walsh, eds., Trans Tech Publications, Ltd., Zurich, Switzerland, pp. 595–598.
Roosa, S. M. M., Kemppainen, J. M., Moffitt, E. N., Krebsbach, P. H., and Hollister, S. J., 2010, “The Pore Size of Polycaprolactone Scaffolds has Limited Influence on Bone Regeneration in an in vivo Model,” J. Biomed. Mater. Res. Part A, 92A(1), pp. 359–368. [CrossRef]
Gong, Y. H., Ma, Z. W., Zhou, Q. L., Li, J., Gao, C. Y., and Shen, J. C., 2008, “Poly(Lactic Acid) Scaffold Fabricated by Gelatin Particle Leaching has Good Biocompatibility for Chondrogenesis,” J. Biomater. Sci., Polym. Ed., 19(2), pp. 207–221. [CrossRef]
Chen, G. P., Ushida, T., and Tateishi, T., 2001, “Preparation of Poly(L-Lactic Acid) and Poly(DL-Lactic-Co-Glycolic Acid) Foams by Use of Ice Microparticulates,” Biomaterials, 22(18), pp. 2563–2567. [CrossRef] [PubMed]
Li, L. H., Kommareddy, K. P., Pilz, C., Zhou, C. R., Fratzl, P., and Manjubala, I., 2010, “In vitro Bioactivity of Bioresorbable Porous Polymeric Scaffolds Incorporating Hydroxyapatite Microspheres,” Acta Biomater., 6(7), pp. 2525–2531. [CrossRef] [PubMed]
Stares, S. L., Fredel, M. C., Aragones, A., Gutmanas, E. Y., Gotman, I., Greil, P., and Travitzky, N., 2013, “PLLA/HA Composite Laminates,” Adv. Eng. Mater., 15(11), pp. 1122–1124. [CrossRef]
Tadmor, Z., and Gogos, C. G., 2006, Principles of Polymer Processing, Vol. 16, 2nd ed., Wiley-Interscience, Hoboken, NJ.
Kamal, M. R., Isayev, A. I., and Liu, S.-J., 2009, Injection Molding: Technol-ogy and Fundamentals, Hanser, Munich.
Boczkowska, A., Chabera, P., Dolata, A. J., Dyzia, M., and Ozieblo, A., 2013, “Porous Ceramic—Metal Composites Obtained by Infiltration Methods,” Metalurgija, 52(3), pp. 345–348.
Zhang, J., Yan, D. X., Lei, J., Xu, J. Z., Hsiao, B. S., and Li, Z. M., 2013, “Ultraporous Poly(Lactic Acid) Scaffolds With Improved Mechanical Performance Using High-Pressure Molding and Salt Leaching,” J. Appl. Polym. Sci., 130(5), pp. 3509–3520. [CrossRef]
Virgilio, N., Sarazin, P., and Favis, B. D., 2010, “Towards Ultraporous Poly(L-Lactide) Scaffolds From Quaternary Immiscible Polymer Blends,” Biomaterials, 31(22), pp. 5719–5728. [CrossRef] [PubMed]
Stevens, B., Yang, Y. Z., Mohandas, A., Stucker, B., and Nguyen, K. T., 2008, “A Review of Materials, Fabrication to Enhance Bone Regeneration in Methods, and Strategies Used Engineered Bone Tissues,” J. Biomed. Mater. Res. Part B, 85B(2), pp. 573–582. [CrossRef]
Jongpaiboonkit, L., Lin, C. Y., Krebsbach, P. H., Hollister, S. J., and Halloran, J. W., 2006, “Mechanical Behavior of Complex 3D Calcium Phosphate Cement Scaffolds Fabricated by Indirect Solid Freeform Fabrication in vivo,” Bioceramics 18, Parts 1 and 2, T.Nakamura, K.Yamashita, and M.Neo, eds., Trans Tech Publications, Ltd., Zurich, Switzerland, pp. 957–960.
Li, X., Bian, W., Li, D., Lian, Q., and Jin, Z., 2011, “Fabrication of Porous Beta-Tricalcium Phosphate With Microchannel and Customized Geometry Based on Gel-Casting and Rapid Prototyping,” Proc. Inst. Mech. Eng. Part H, 225(H3), pp. 315–323.
Lin, L. L., Zhang, H. C., Zhao, L., Hu, Q. X., and Fang, M. L., 2009, “Design and Preparation of Bone Tissue Engineering Scaffolds With Porous Controllable Structure,” J. Wuhan Univ. Technol., Mater. Sci. Ed., 24(2), pp. 174–180. [CrossRef]
Sharma, B., and Elisseeff, J. H., 2004, “Engineering Structurally Organized Cartilage and Bone Tissues,” Ann. Biomed. Eng., 32(1), pp. 148–159. [CrossRef] [PubMed]
Kuo, Y. C., and Leou, S. N., 2006, “Effects of Composition, Solvent, and Salt Particles on the Physicochemical Properties of Polyglycolide/Poly(Lactide-Co-Glycolide) Scaffolds,” Biotechnol. Prog., 22(6), pp. 1664–1670. [CrossRef] [PubMed]
Izal, I., Aranda, P., Sanz-Ramos, P., Ripalda, P., Mora, G., Granero-Molto, F., Deplaine, H., Gomez-Ribelles, J. L., Ferrer, G. G., Acosta, V., Ochoa, I., Garcia-Aznar, J. M., Andreu, E. J., Monleon-Pradas, M., Doblare, M., and Prosper, F., 2013, “Culture of Human Bone Marrow-Derived Mesenchymal Stem Cells on of Poly(L-Lactic Acid) Scaffolds, Potential Application for the Tissue Engineering of Cartilage,” Knee Surg. Sports Traumatol. Arthrosc., 21(8), pp. 1737–1750. [CrossRef] [PubMed]
Akhyari, P., Kamiya, H., Haverich, A., Karck, M., and Lichtenberg, A., 2008, “Myocardial Tissue Engineering: The Extracellular Matrix,” Eur. J. Cardio-Thorac. Surg., 34(2), pp. 229–241. [CrossRef]
Teebken, O. E., and Haverich, A., 2002, “Tissue Engineering of Small Diameter Vascular Grafts,” Eur. J. Vasc. Endovasc. Surg., 23(6), pp. 475–485. [CrossRef] [PubMed]
Johnson, T., Bahrampourian, R., Patel, A., and Mequanint, K., 2010, “Fabrication of Highly Porous Tissue-Engineering Scaffolds Using Selective Spherical Porogens,” Biomed. Mater. Eng., 20(2), pp. 107–118. [CrossRef] [PubMed]
Crapo, P. M., and Wang, Y., 2010, “Physiologic Compliance in Engineered Small-Diameter Arterial Constructs Based on an Elastomeric Substrate,” Biomaterials, 31(7), pp. 1626–1635. [CrossRef] [PubMed]
Ameer, G. A., Yang, J., Motlagh, D., and Webb, A. R., 2005, “Novel Biphasic Elastomeric Scaffold for Small-Diameter Blood Vessel Tissue Engineering,” Tissue Eng., 11(11-12), pp. 1876–1886. [CrossRef] [PubMed]
Santerre, J. P., Sharifpoor, S., and Labow, R. S., 2009, “Synthesis and Characterization of Degradable Polar Hydrophobic Ionic Polyurethane Scaffolds for Vascular Tissue Engineering Applications,” Biomacromolecules, 10(10), pp. 2729–2739. [CrossRef] [PubMed]
Santerre, J. P., Sharifpoor, S., Simmons, C. A., and Labow, R. S., 2011, “Functional Characterization of Human Coronary Artery Smooth Muscle Cells Under Cyclic Mechanical Strain in a Degradable Polyurethane Scaffold,” Biomaterials, 32(21), pp. 4816–4829. [CrossRef] [PubMed]
Lee, K. W., and Wang, Y., 2011, “Elastomeric PGS Scaffolds in Arterial Tissue Engineering,” J. Vis. Exp., 50, p. 2691. [CrossRef]
Jiang, B., Waller, T. M., Larson, J. C., Appel, A. A., and Brey, E. M., 2013, “Fibrin-Loaded Porous Poly(Ethylene Glycol) Hydrogels as Scaffold Materials for Vascularized Tissue Formation,” Tissue Eng. Part A, 19(1-2), pp. 224–234. [CrossRef] [PubMed]
Kim, S. H., Mun, C. H., Jung, Y., Kim, S. H., Kim, D. I., and Kim, S. H., 2013, “Mechanical Properties of Compliant Double Layered Poly(L-Lactide-Co-Epsilon-Caprolactone) Vascular Graft,” Macromol. Res., 21(8), pp. 886–891. [CrossRef]
Nerem, R. M., and Ensley, A. E., 2004, “The Tissue Engineering of Blood Vessels and the Heart,” Am. J. Transplant., 4, pp. 36–42. [CrossRef] [PubMed]
Wagner, W. R., Fujimoto, K. L., Guan, J. J., Oshima, H., and Sakai, T., 2007, “In vivo Evaluation of a Porous, Elastic, Biodegradable Patch for Reconstructive Cardiac Procedures,” Ann. Thorac. Surg., 83(2), pp. 648–654. [CrossRef] [PubMed]
Shakesheff, K. M., Hidalgo-Bastida, L. A., Barry, J. J. A., Everitt, N. M., Rose, F. R. A. J., Buttery, L. D., Hall, I. P., and Claycomb, W. C., 2007, “Cell Adhesion and Mechanical Properties of a Flexible Scaffold for Cardiac Tissue Engineering,” Acta Biomater., 3(4), pp. 457–462. [CrossRef] [PubMed]
Radisic, M., Park, H., Chen, F., Salazar-Lazzaro, J. E., Wang, Y., Dennis, R., Langer, R., Freed, L. E., and Vunjak-Novakovic, G., 2006, “Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds,” Tissue Eng., 12(8), pp. 2077–2091. [CrossRef] [PubMed]
Radisic, M., Park, H., Martens, T. P., Salazar-Lazaro, J. E., Geng, W., Wang, Y., Langer, R., Freed, L. E., and Vunjak-Novakovic, G., 2007, “Pre-Treatment of Synthetic Elastomeric Scaffolds by Cardiac Fibroblasts Improves Engineered Heart Tissue,” J. Biomed. Mater. Res. Part A, 86A(3), pp. 713–724. [CrossRef]
Vunjak-Novakovic, G., Marsano, A., Maidhof, R., Wan, L. Q., Wang, Y. D., Gao, J., and Tandon, N., 2010, “Scaffold Stiffness Affects the Contractile Function of Three-Dimensional Engineered Cardiac Constructs,” Biotechnol. Prog., 26(5), pp. 1382–1390. [CrossRef] [PubMed]
Guarino, V., Gloria, A., Alvarez-Perez, M., Raucci, M. G., Cirillo, V., Ronca, A., De Santis, R., and Ambrosio, L., 2011, Design of Functional Polymer and Composite Scaffolds for the Regeneration of Bone, Menisci, Osteochondral and Peripheral Nervous Tissues,” Advances in Innovative Materials and Applications, M.Soueidan, M.Roumie, and P.Masri, eds., Trans Tech Publications, Ltd., Zurich, Switzerland, pp. 8–13.
Studenovska, H., Slouf, M., and Rypacek, F., 2008, “Poly(HEMA) Hydrogels With Controlled Pore Architecture for Tissue Regeneration Applications,” J. Mater. Sci.: Mater. Med., 19(2), pp. 615–621. [CrossRef] [PubMed]
Guo, B., Sun, Y., Finne-Wistrand, A., Mustafa, K., and Albertsson, A.-C., 2012, “Electroactive Porous Tubular Scaffolds With Degradability and Non-Cytotoxicity for Neural Tissue Regeneration,” Acta Biomater., 8(1), pp. 144–153. [CrossRef] [PubMed]
Kokai, L. E., Lin, Y.-C., Oyster, N. M., and Marra, K. G., 2009, “Diffusion of Soluble Factors Through Degradable Polymer Nerve Guides: Controlling Manufacturing Parameters,” Acta Biomater., 5(7), pp. 2540–2550. [CrossRef] [PubMed]
Wong, D. Y., Leveque, J.-C., Brumblay, H., Krebsbach, P. H., Hollister, S. J., and LaMarca, F., 2008, “Macro-Architectures in Spinal Cord Scaffold Implants Influence Regeneration,” J. Neurotrauma, 25(8), pp. 1027–1037. [CrossRef] [PubMed]
Moisenovich, M. M., Pustovalova, O. L., Arhipova, A. Y., Vasiljeva, T. V., Sokolova, O. S., Bogush, V. G., Debabov, V. G., Sevastianov, V. I., Kirpichnikov, M. P., and Agapov, I. I., 2011, “In vitro and in vivo Biocompatibility Studies of a Recombinant Analogue of Spidroin 1 Scaffolds,” J. Biomed. Mater. Res. Part A, 96A(1), pp. 125–131. [CrossRef]
Hu, Y. Q., and Zhu, K. J., 2004, “Synthesis, Characterization and Degradation of Poly(2,2-Dimethyl Trimethylene Carbonate-Co-Epsilon-Caprolactone-Co-Glycolide),” Polym. Degrad. Stab., 85(1), pp. 705–712. [CrossRef]
Ohashi, K., 2008, “Liver Tissue Engineering: The Future of Liver Therapeutics,” Hepatol. Res., 38, pp. S76–S87. [CrossRef] [PubMed]
He, J. K., Li, D. C., Liu, Y. X., Yao, B., Lu, B. H., and Lian, Q., 2007, “Fabrication and Characterization of Chitosan/Gelatin Porous Scaffolds With Predefined Internal Microstructures,” Polymer, 48(15), pp. 4578–4588. [CrossRef]
Kataoka, K., Nagao, Y., Nukui, T., Akiyama, I., Tsuru, K., Hayakawa, S., Osaka, A., and Huh, N., 2005, “An Organic-Inorganic Hybrid Scaffold for the Culture of HepG2 Cells in a Bioreactor,” Biomaterials, 26(15), pp. 2509–2516. [CrossRef] [PubMed]
Javaid Ur, R., and Waseem, T., 2008, “Intestinal Tissue Engineering: Where do We Stand?,” Surg. Today, 38(6), pp. 484–486. [CrossRef] [PubMed]
Widmer, M. S., Gupta, P. K., Lu, L. C., Meszlenyi, R. K., Evans, G. R. D., Brandt, K., Savel, T., Gurlek, A., Patrick, C. W., and Mikos, A. G., 1998, “Manufacture of Porous Biodegradable Polymer Conduits by an Extrusion Process for Guided Tissue Regeneration,” Biomaterials, 19(21), pp. 1945–1955. [CrossRef] [PubMed]
Gupta, A., Vara, D. S., Punshon, G., Sales, K. M., Winslet, M. C., and Seifalian, A. M., 2009, “In vitro Small Intestinal Epithelial Cell Growth on a Nanocomposite Polycaprolactone Scaffold,” Biotechnol. Appl. Biochem., 54, pp. 221–229. [CrossRef] [PubMed]
Horch, R. E., Kopp, J., Kneser, U., Beier, J., and Bach, A. D., 2005, “Tissue Engineering of Cultured Skin Substitutes,” J. Cell. Mol. Med., 9(3), pp. 592–608. [CrossRef] [PubMed]
Ahn, S., Lee, S., Cho, Y., Chun, W., and Kim, G., 2011, “Fabrication of Three-Dimensional Collagen Scaffold Using an Inverse Mould-Leaching Process,” Bioprocess Biosyst. Eng., 34(7), pp. 903–911. [CrossRef] [PubMed]
Lee, S. B., Kim, Y. H., Chong, M. S., Hong, S. H., and Lee, Y. M., 2005, “Study of Gelatin-Containing Artificial Skin V: Fabrication of Gelatin Scaffolds Using a Salt-Leaching Method,” Biomaterials, 26(14), pp. 1961–1968. [CrossRef] [PubMed]
Benatti, B. B., Silverio, K. G., Casati, M. Z., Sallum, E. A., and Nociti, F. H., 2007, “Physiological Features of Periodontal Regeneration and Approaches for Periodontal Tissue Engineering Utilizing Periodontal Ligament Cells,” J. Biosci. Bioeng., 103(1), pp. 1–6. [CrossRef] [PubMed]
Schander, K., Arvidson, K., Mustafa, K., Hellem, E., Bolstad, A. I., Finne-Wistrand, A., and Albertsson, A. C., 2010, “Response of Bone and Periodontal Ligament Cells to Biodegradable Polymer Scaffolds in vitro,” J. Bioact. Compat. Polym., 25(6), pp. 584–602. [CrossRef]
Xu, Y. Z., Wu, J. J., Chen, Y. P., Liu, J. A., Li, N., and Yang, F. Y., 2010, “The Use of Zein and Shuanghuangbu for Periodontal Tissue Engineering,” Int. J. Oral Sci., 2(3), pp. 142–148. [CrossRef] [PubMed]
Garg, T., Singh, O., Arora, S., and Murthy, R. S. R., 2012, “Scaffold: A Novel Carrier for Cell and Drug Delivery,” Crit. Rev. Ther. Drug Carrier Syst., 29(1), pp. 1–63. [CrossRef] [PubMed]
Yoon, J. J., Kim, J. H., and Park, T. G., 2003, “Dexamethasone-Releasing Biodegradable Polymer Scaffolds Fabricated by a Gas-Foaming/Salt-Leaching Method,” Biomaterials, 24(13), pp. 2323–2329. [CrossRef] [PubMed]
El-Ayoubi, R., Eliopoulos, N., Diraddo, R., Jacques, G., and Yousef, A. M., 2008, “Design and Fabrication of 3D Porous Scaffolds to Facilitate Cell-Based Gene Therapy,” Tissue Eng. Part A, 14(6), pp. 1037–1048. [CrossRef] [PubMed]
Kloke, A., von Stetten, F., Zengerle, R., and Kerzenmacher, S., 2011, “Strategies for the Fabrication of Porous Platinum Electrodes,” Adv. Mater., 23(43), pp. 4976–5008. [CrossRef] [PubMed]
Taillades, G., Batocchi, P., Essoumhi, A., Taillades, M., Jones, D. J., and Roziere, J., 2011, “Engineering of Porosity, Microstructure and Electrical Properties of Ni-BaCe0.9Y0.1O2.95 Cermet Fuel Cell Electrodes by Gelled Starch Porogen Processing,” Microporous Mesoporous Mater., 145(1-3), pp. 26–31. [CrossRef]
Luckarift, H. R., Sizemore, S. R., Farrington, K. E., Roy, J., Lau, C., Atanassov, P. B., and Johnson, G. R., 2012, “Facile Fabrication of Scalable, Hierarchically Structured Polymer/Carbon Architectures for Bioelectrodes,” ACS Appl. Mater. Interfaces, 4(4), pp. 2082–2087. [CrossRef] [PubMed]
Simms, H. A., Bowman, C. A., and Anseth, K. S., 2008, “Using Living Radical Polymerization to Enable Facile Incorporation of Materials in Microfluidic Cell Culture Devices,” Biomaterials, 29(14), pp. 2228–2236. [CrossRef] [PubMed]
Perez, N., Tavera, T., Rodriguez, A., Ellman, M., Ayerdi, I., and Olaizola, S. M., 2012, “Fabrication of Sub-Micrometric Metallic Hollow-Core Structures by Laser Interference Lithography,” Appl. Surf. Sci., 258(23), pp. 9370–9373. [CrossRef]
Wolf, A. J., Hauser, H., Kubler, V., Walk, C., Hohn, O., and Blasi, B., 2012, “Origination of Nano- and Microstructures on Large Areas by Interference Lithography,” Microelectron. Eng., 98, pp. 293–296. [CrossRef]
Ahn, H. J., Thiyagarajan, P., Jia, L., Kim, S. I., Yoon, J. C., Thomas, E. L., and Jang, J. H., 2013, “An Optimal Substrate Design for SERS: Dual-Scale Diamond-Shaped Gold Nano-Structures Fabricated via Interference Lithography,” Nanoscale, 5(5), pp. 1836–1842. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

A simplified illustration of the porogen templating process involving three sequential stages: (a) preparing a porogen template; (b) molding or casting of the desired polymeric material; and (c) removing the porogen template [34]

Grahic Jump Location
Fig. 2

A Venn diagram showing the relation of indirect SFF, particle assembly and templating, porogen templating, and lost-core molding and casting

Grahic Jump Location
Fig. 3

An example porogen design with a complex layout of trusses and beams corresponding to a complex layout of channels in the resulting porous replicate

Grahic Jump Location
Fig. 4

Diagram of the main processes in the bone scaffold and tissue manufacturing system [31]

Grahic Jump Location
Fig. 5

Illustration of a microsphere-templating process: wax microsphere template sintering (a), polymer casting (b), wax microsphere template removal (c), and resulting porous structure (d) [22]

Grahic Jump Location
Fig. 6

Schematics for the two paths to generate gradient porogen template: (a) the first path to mix porogens with molding materials and then form a gradient (multiple tape-casting technique is shown) and (b) the second path to form gradient porogen template before casting materials

Grahic Jump Location
Fig. 7

Different molding and casting processes by (a) injection; (b) gravity casting; (c) vacuum infusion; (d) capillary wetting; and (e) centrifuging casting

Grahic Jump Location
Fig. 8

A flow chart illustrates scaffold fabrication using a hybrid method combining indirect solid freeform with particle assembly [109]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In