0
Technology Review

Machining of Carbon Fiber Reinforced Plastics/Polymers: A Literature Review

[+] Author and Article Information
Demeng Che

Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: dche@u.northwestern.edu

Ishan Saxena

Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: ishansaxena2013@u.northwestern.edu

Peidong Han

Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: peidonghan2014@u.northwestern.edu

Ping Guo

Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: pingguo2009@u.northwestern.edu

Kornel F. Ehmann

Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: k-ehmann@northwestern.edu

Manuscript received August 13, 2013; final manuscript received January 17, 2014; published online March 26, 2014. Assoc. Editor: Patrick Kwon.

J. Manuf. Sci. Eng 136(3), 034001 (Mar 26, 2014) (22 pages) Paper No: MANU-13-1309; doi: 10.1115/1.4026526 History: Received August 13, 2013; Revised January 17, 2014

Carbon fiber reinforced plastics/polymers (CFRPs) offer excellent mechanical properties that lead to enhanced functional performance and, in turn, wide applications in numerous industrial fields. Post machining of CFRPs is an essential procedure that assures that the manufactured components meet their dimensional tolerances, surface quality and other functional requirements, which is currently considered an extremely difficult process due to the highly nonlinear, inhomogeneous, and abrasive nature of CFRPs. In this paper, a comprehensive literature review on machining of CFRPs is given with a focus on five main issues including conventional and unconventional hybrid processes for CFRP machining, cutting theories and thermal/mechanical response studies, numerical simulations, tool performance and tooling techniques, and economic impacts of CFRP machining. Given the similarities in the experimental and theoretical studies related to the machining of glass fiber reinforced polymers (GFRPs) and other FRPs parallel insights are drawn to CFRP machining to offer additional understanding of on-going and promising attempts in CFRP machining.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Getcarbonfiber, 2012, “Introduction to Carbon Fiber Reinforced Polymer,” http://www.getcarbonfiber.com/carbon-fiber-vinyl/introduction-to-carbon-fiber-reinforced-polymer/
Wikipedia, 2012, “Carbon-Fiber-Reinforced Polymer,” http://en.wikipedia.org/wiki/Carbon-fiber-reinforced_polymer
Wang, X. M., and Zhang, L. C., 2003, “An Experimental Investigation Into the Orthogonal Cutting of Unidirectional Fibre Reinforced Plastics,” Int. J. Mach. Tools Manuf., 43(10), pp. 1015–1022. [CrossRef]
Dandekar, C. R., and Shin, Y. C., 2012, “Modeling of Machining of Composite Materials: A Review,” Int J. Mach. Tools Manuf., 57, pp. 102–121. [CrossRef]
Secotools, 2013, “The Future is Here,” http://www.secotools.com/CorpWeb/india/pdf/MT_FEB13_SECO.pdf
Koplev, A., “Cutting of CFRP With Single Edge Tools,” Proceedings Advances in Composite Materials, pp. 1597–1605.
Wang, D. H., Ramulu, M., and Arola, D., 1995, “Orthogonal Cutting Mechanisms of Graphite/Epoxy Composite. Part I: Unidirectional Laminate,” Int. J. Mach. Tools Manuf., 35(12), pp. 1623–1638. [CrossRef]
Nor Khairusshima, M. K., Che Hassan, C. H., Jaharah, A. G., and Nurul Amin, A., 2012, “Tool Wear and Surface Roughness on Milling Carbon Fiber-Reinforced Plastic Using Chilled Air,” J. Asian Sci. Res., 2(11), pp. 593–598.
Grilo, T. J., Paulo, R. M. F., Silva, C. R. M., and Davim, J. P., 2013, “Experimental Delamination Analyses of CFRPs Using Different Drill Geometries,” Compos. Part B: Eng., 45(1), pp. 1344–1350. [CrossRef]
Sreejith, P. S., Krishnamurthy, R., Malhotra, S. K., and Narayanasamy, K., 2000, “Evaluation of PCD Tool Performance During Machining of Carbon/Phenolic Ablative Composites,” J. Mater. Process. Technol., 104(1–2), pp. 53–58. [CrossRef]
Caprino, G., De lorio, I., Nele, L., and Santo, L., 1996, “Effect of Tool Wear on Cutting Forces in the Orthogonal Cutting of Unidirectional Glass Fibre-Reinforced Plastics,” Compos. Part A: Appl. Sci. Manuf., 27(5), pp. 409–415. [CrossRef]
Lin, S. C., and Chen, I. K., 1996, “Drilling Carbon Fiber-Reinforced Composite Material at High Speed,” Wear, 194(1–2), pp. 156–162. [CrossRef]
Abrão, A. M., Rubio, J. C. C., Faria, P. E., and Davim, J. P., 2008, “The Effect of Cutting Tool Geometry on Thrust Force and Delamination When Drilling Glass Fibre Reinforced Plastic Composite,” Mater. Des., 29(2), pp. 508–513. [CrossRef]
Bagci, E., and Işık, B., 2006, “Investigation of Surface Roughness in Turning Unidirectional GFRP Composites by Using RS Methodology and ANN,” Int. J. Adv. Manuf. Technol., 31(1), pp. 10–17. [CrossRef]
Santhanakrishnan, G., Krishnamurthy, R., and Malhotra, S. K., 1988, “Machinability Characteristics of Fibre Reinforced Plastics Composites,” J. Mech. Working Technol., 17, pp. 195–204. [CrossRef]
Lazar, M.-B., and Xirouchakis, P., 2011, “Experimental Analysis of Drilling Fiber Reinforced Composites,” Int. J. Mach. Tools Manuf., 51(12), pp. 937–946. [CrossRef]
Shahrajabian, H., Hadi, M., and Farahnakian, M., 2012, “Experimental Investigation of Machining Parameters on Machinability of Carbon Fiber/Epoxy Composites,” Int. J. Eng. Innovative Technol., 2(3), pp. 30–36.
Everstine, G. C., and Rogers, T. G., 1971, “A Theory of Machining of Fiber-Reinforced Materials,” J. Compos. Mater., 5(1), pp. 94–106. [CrossRef]
Ramesh, M. V., Seetharamu, K. N., Ganesan, N., and Sivakumar, M. S., 1998, “Analysis of Machining of FRPs Using FEM,” Int. J. Mach. Tools Manuf., 38(12), pp. 1531–1549. [CrossRef]
Chandrasekharan, V., Kapoor, S. G., and DeVor, R. E., 1995, “A Mechanistic Approach to Predicting the Cutting Forces in Drilling: With Application to Fiber-Reinforced Composite Materials,” ASME J. Eng. Ind., 117(4), pp. 559–570. [CrossRef]
König, W., Wulf, C., Graß, P., and Willerscheid, H., 1985, “Machining of Fibre Reinforced Plastics,” CIRP Ann., 34(2), pp. 537–548. [CrossRef]
Abrão, A. M., Faria, P. E., Rubio, J. C. C., Reis, P., and Davim, J. P., 2007, “Drilling of Fiber Reinforced Plastics: A Review,” J. Mater. Process. Technol., 186(1–3), pp. 1–7. [CrossRef]
Kanda, K., Takehana, S., Yoshida, S., Watanabe, R., Takano, S., Ando, H., and Shimakura, F., 1995, “Application of Diamond-Coated Cutting Tools,” Surf. Coat. Technol., 73(1–2), pp. 115–120. [CrossRef]
Hocheng, H., and Tsao, C. C., 2005, “The Path Towards Delamination-Free Drilling of Composite Materials,” J. Mater. Process. Technol., 167(2–3), pp. 251–264. [CrossRef]
Liu, D., Tang, Y., and Cong, W. L., 2012, “A Review of Mechanical Drilling for Composite Laminates,” Compos. Struct., 94(4), pp. 1265–1279. [CrossRef]
Ferreira, J. R., Coppini, N. L., and Miranda, G. W. A., 1999, “Machining Optimisation in Carbon Fibre Reinforced Composite Materials,” J. Mater. Process.Technol., 92–93, pp. 135–140. [CrossRef]
Rajasekaran, T., Palanikumar, K., and Vinayagam, B. K., 2011, “Application of Fuzzy Logic for Modeling Surface Roughness in Turning CFRP Composites Using CBN Tool,” Prod. Eng. Res. Dev., 5(2), pp. 191–199. [CrossRef]
Santhanakrishnan, G., Krishnamurthy, R., and Malhotra, S. K., 1992, “Investigation Into the Machining of Carbon-Fibre-Reinforced Plastics With Cemented Carbides,” J. Mater. Process. Technol., 30(3), pp. 263–275. [CrossRef]
Kim, K. S., Lee, D. G., Kwak, Y. K., and Namgung, S., 1992, “Machinability of Carbon Fiber-Epoxy Composite Materials in Turning,” J. Mater. Process. Technol., 32(3), pp. 553–570. [CrossRef]
Palanikumar, K., 2008, “Application of Taguchi and Response Surface Methodologies for Surface Roughness in Machining Glass Fiber Reinforced Plastics by PCD Tooling,” Int. J. Adv. Manuf. Technol., 36(1), pp. 19–27. [CrossRef]
Lee, E. S., 2001, “Precision Machining of Glass Fibre Reinforced Plastics With Respect to Tool Characteristics,” Int. J. Adv. Manuf. Technol., 17(11), pp. 791–798. [CrossRef]
Spur, G., and Wunsch, U. E., 1988, “Turning of Fiber-Reinforced Plastics,” Manuf. Rev., 1(2), pp. 124–129.
Chang, C.-S., 2006, “Turning of Glass–Fiber Reinforced Plastics Materials With Chamfered Main Cutting Edge Carbide Tools,” J. Mater. Process. Technol., 180(1–3), pp. 117–129. [CrossRef]
Sarma, P. M. M. S., Karunamoorthy, L., and Palanikumar, K., 2008, “Modeling and Analysis of Cutting Force in Turning of GFRP Composites by CBN Tools,” J. Reinf. Plast. Compos., 27(7), pp. 711–723. [CrossRef]
Hocheng, H., Puw, H. Y., and Huang, Y., 1993, “Preliminary Study on Milling of Unidirectional Carbon Fibre-Reinforced Plastics,” Compos. Manuf., 4(2), pp. 103–108. [CrossRef]
Davim, J. P., and Reis, P., 2005, “Damage and Dimensional Precision on Milling Carbon Fiber-Reinforced Plastics Using Design Experiments,” J. Mater. Process. Technol., 160(2), pp. 160–167. [CrossRef]
Kalla, D., Sheikh-Ahmad, J., and Twomey, J., 2010, “Prediction of Cutting Forces in Helical End Milling Fiber Reinforced Polymers,” Int. J. Mach. Tools Manuf., 50(10), pp. 882–891. [CrossRef]
Denkena, B., Boehnke, D., and Dege, J. H., 2008, “Helical Milling of CFRP–Titanium Layer Compounds,” CIRP J. Manuf. Sci. Technol., 1(2), pp. 64–69. [CrossRef]
Karpat, Y., Bahtiyar, O., and Değer, B., 2012, “Mechanistic Force Modeling for Milling of Unidirectional Carbon Fiber Reinforced Polymer Laminates,” Int. J. Mach. Tools Manuf., 56, pp. 79–93. [CrossRef]
El-Sonbaty, I., Khashaba, U. A., and Machaly, T., 2004, “Factors Affecting the Machinability of GFR/Epoxy Composites,” Compos. Struct., 63(3–4), pp. 329–338. [CrossRef]
Faraz, A., Biermann, D., and Weinert, K., 2009, “Cutting Edge Rounding: An Innovative Tool Wear Criterion in Drilling CFRP Composite Laminates,” Int. J. Mach. Tools Manuf., 49(15), pp. 1185–1196. [CrossRef]
Chen, W.-C., 1997, “Some Experimental Investigations in the Drilling of Carbon Fiber-Reinforced Plastic (CFRP) Composite Laminates,” Int. J. Mach. Tools Manuf., 37(8), pp. 1097–1108. [CrossRef]
Tsao, C. C., and Hocheng, H., 2004, “Taguchi Analysis of Delamination Associated With Various Drill Bits in Drilling of Composite Material,” Int. J. Mach. Tools Manuf., 44(10), pp. 1085–1090. [CrossRef]
Davim, J. P., and Reis, P., 2003, “Study of Delamination in Drilling Carbon Fiber Reinforced Plastics (CFRP) Using Design Experiments,” Compos. Struct., 59(4), pp. 481–487. [CrossRef]
Davim, J. P., and Reis, P., 2003, “Drilling Carbon Fiber Reinforced Plastics Manufactured by Autoclave—Experimental and Statistical Study,” Mater. Des., 24(5), pp. 315–324. [CrossRef]
Hocheng, H., and Tsao, C. C., 2006, “Effects of Special Drill Bits on Drilling-Induced Delamination of Composite Materials,” Int. J. Mach. Tools Manuf., 46(12–13), pp. 1403–1416. [CrossRef]
Piquet, R., Ferret, B., Lachaud, F., and Swider, P., 2000, “Experimental Analysis of Drilling Damage in Thin Carbon/Epoxy Plate Using Special Drills,“Compos. Part A: Appl. Sci. Manuf., 31(10), pp. 1107–1115. [CrossRef]
Marques, A. T., Durão, L. M., Magalhães, A. G., Silva, J. F., and Tavares, J. M. R. S., 2009, “Delamination Analysis of Carbon Fibre Reinforced Laminates: Evaluation of a Special Step Drill,” Compos. Sci. Technol., 69(14), pp. 2376–2382. [CrossRef]
Ramulu, M., Wern, C. W., and Garbini, J. L., 1993, “Effect of Fibre Direction on Surface Roughness Measurements of Machined Graphite/Epoxy Composite,” Compos. Manuf., 4(1), pp. 39–51. [CrossRef]
Wang, D. H., Ramulu, M., and Arola, D., 1995, “Orthogonal Cutting Mechanisms of Graphite/Epoxy Composite. Part II: Multi-Directional Laminate,” Int. J. Mach. Tools Manuf., 35(12), pp. 1639–1648. [CrossRef]
Kozak, J., and Rajurkar, K., “Hybrid Machining Process Evaluation and Development,” Proceedings of 2nd International Conference on Machining and Measurements of Sculptured Surfaces, Keynote Paper, Krakow, pp. 501–536.
Rajurkar, K. P., Zhu, D., McGeough, J. A., Kozak, J., and De Silva, A., 1999, “New Developments in Electro-Chemical Machining,” CIRP Ann.—Manuf. Technol., 48(2), pp. 567–579. [CrossRef]
Brehl, D. E., and Dow, T. A., 2008, “Review of Vibration-Assisted Machining,” Precis. Eng., 32(3), pp. 153–172. [CrossRef]
Wang, X., Wang, L. J., and Tao, J. P., 2004, “Investigation on Thrust in Vibration Drilling of Fiber-Reinforced Plastics,” J. Mater. Process. Technol., 148(2), pp. 239–244. [CrossRef]
Kim, J.-D., and Lee, E.-S., 1996, “A Study of Ultrasonic Vibration Cutting of Carbon Fibre Reinforced Plastics,” Int. J. Adv. Manuf. Technol., 12(2), pp. 78–86. [CrossRef]
Shin, Y. C., 2000, “Laser Assisted Machining,” Mach. Technol., 11(3), pp. 1–6.
Wang, Y., Yang, L. J., and Wang, N. J., 2002, “An Investigation of Laser-Assisted Machining of Al2O3 Particle Reinforced Aluminum Matrix Composite,” J. Mater. Process. Technol., 129(1–3), pp. 268–272. [CrossRef]
Belytschko, T., Moran, B., and Liu, W. K., 1999, Nonlinear Finite Element Analysis for Continua and Structures, John Wiley & Sons, West Sussex, UK.
Caprino, G., and Tagliaferri, V., 1988, “Maximum Cutting Speed in Laser Cutting of Fiber Reinforced Plastics,” Int. J. Mach. Tools Manuf., 28(4), pp. 389–398. [CrossRef]
Wolynski, A., Herrmann, T., Mucha, P., Haloui, H., and L'huillier, J., 2011, “Laser Ablation of CFRP Using Picosecond Laser Pulses at Different Wavelengths From UV to IR,” Phys. Procedia, 12, pp. 292–301. [CrossRef]
Goeke, A., and Emmelmann, C., 2010, “Influence of Laser Cutting Parameters on CFRP Part Quality,” Phys. Procedia, 5, pp. 253–258. [CrossRef]
Tasdelen, B., Thordenberg, H., and Olofsson, D., 2008, “An Experimental Investigation on Contact Length During Minimum Quantity Lubrication (MQL) Machining,” J. Mater. Process. Technol., 203(1–3), pp. 221–231. [CrossRef]
Weinert, K., Inasaki, I., Sutherland, J. W., and Wakabayashi, T., 2004, “Dry Machining and Minimum Quantity Lubrication,” CIRP Ann.—Manuf. Technol., 53(2), pp. 511–537. [CrossRef]
Brinksmeier, E., and Janssen, R., 2002, “Drilling of Multi-Layer Composite Materials Consisting of Carbon Fiber Reinforced Plastics (CFRP), Titanium, and Aluminum Alloys,” CIRP Ann.—Manuf. Technol., 51(1), pp. 87–90. [CrossRef]
Ramulu, M., and Arola, D., 1993, “Water Jet and Abrasive Water Jet Cutting of Unidirectional Graphite/Epoxy Composite,” Composites, 24(4), pp. 299–308. [CrossRef]
Groppetti, R., Armanni, A., Cattaneo, A., and Franceschini, G., 1992, “Contribution to the Study of the Delamination of Carbon Fibre Reinforced Plastic (CFRP) Laminated Composites During Piercing and Cutting by Hydro Jet Machining (HJM) and Hydro Abrasive Jet Machining (HAJM),” Computer Aided Design in Composite Material Technology III, S. G.Advani, W. R.Blain, W. P.Wilde, J. W.Gillespie, Jr., and O. H.Griffin, Jr., eds., Springer, Dordrecht, The Netherlands, pp. 189–209.
Azmir, M. A., and Ahsan, A. K., 2008, “Investigation on Glass/Epoxy Composite Surfaces Machined by Abrasive Water Jet Machining,” J. Mater. Process. Technol., 198(1–3), pp. 122–128. [CrossRef]
Hocheng, H., Wang, B., Tsai, H. Y., and Shiue, J. J., 1997, “Feasibility Study of Abrasive-Waterjet Milling of Fiber-Reinforced Plastics,” ASME J. Manuf. Sci. Eng., 119(2), pp. 133–142. [CrossRef]
Lemma, E., Chen, L., Siores, E., and Wang, J., 2002, “Study of Cutting Fiber-Reinforced Composites by Using Abrasive Water-Jet With Cutting Head Oscillation,” Compos. Struct., 57(1–4), pp. 297–303. [CrossRef]
Koplev, A., Lystrup, A., and Vorm, T., 1983, “The Cutting Process, Chips, and Cutting Forces in Machining CFRP,” Composites, 14(4), pp. 371–376. [CrossRef]
Pwu, H. Y., and Hocheng, H., 1998, “Chip Formation Model of Cutting Fiber-Reinforced Plastics Perpendicular to Fiber Axis,” ASME J. Manuf. Sci. Eng., 120(1), pp. 192–196. [CrossRef]
Calzada, K., Samuel, J., Kapoor, S., Devor, R., Srivastava, A., and Iverson, J., 2010, “Failure Mechanisms Encountered in Micro Milling of Aligned Carbon Fiber Reinforced Polymers,” Trans. NAMRI/SME, 38, pp. 221–228.
Zhang, L., Zhang, H., and Wang, X., 2001, “A Force Prediction Modle for Cutting Unidirectional Fibre-Reinforced Plastics,” Mach. Sci. Technol., 5(3), p. 293. [CrossRef]
Lasri, L., Nouari, M., and El Mansori, M., 2009, “Modelling of Chip Separation in Machining Unidirectional FRP Composites by Stiffness Degradation Concept,” Compos. Sci. Technol., 69(5), pp. 684–692. [CrossRef]
Sakuma, K., and Seto, M., 1981, “Tool Wear in Cutting Glass-Fiber-Reinforced-Plastics: The Relation Between Cutting Temperature and Tool Wear,” Bull. JSME, 24(190), pp. 748–755. [CrossRef]
DeVries, M., and Wu, S.-M., 1970, “Evaluation of the Effects of Design Variables on Drill Temperature Responses,” ASME J. Eng. Ind., 92, pp. 699–705. [CrossRef]
Agapiou, J. S., and DeVries, M. F., 1990, “On the Determination of Thermal Phenomena During Drilling—Part I. Analytical Models of Twist Drill Temperature Distributions,” Int. J. Mach. Tools Manuf., 30(2), pp. 203–215. [CrossRef]
Ozcelik, B., and Bagci, E., 2006, “Experimental and Numerical Studies on the Determination of Twist Drill Temperature in Dry Drilling: A New Approach,” Mater. Des., 27(10), pp. 920–927. [CrossRef]
Che, D., Han, P., Guo, P., and Ehmann, K., 2012, “Issues in Polycrystalline Diamond Compact Cutter—Rock Interaction From a Metal Machining Point of View—Part I: Temperature, Stresses, and Forces,” ASME J. Manuf. Sci. Eng., 134(6), p. 064001. [CrossRef]
Werschmöller, D., 2010, “Measurement of Transient Tool Internal Temperature Fields by Novel Micro Thin Film Sensors Embedded in Polycrystalline Cubic Boron Nitride Cutting Inserts,” Ph.D. dissertation, University of Wisconsin-Madison, Madison, WI.
Werschmoeller, D., Li, X., and Ehmann, K., 2012, “Measurement of Transient Tool-Internal Temperature Fields During Hard Turning by Insert-Embedded Thin Film Sensors,” ASME J. Manuf. Sci. Eng., 134(6), p. 061004. [CrossRef]
Arola, D., Sultan, M. B., and Ramulu, M., 2002, “Finite Element Modeling of Edge Trimming Fiber Reinforced Plastics,” ASME J. Manuf. Sci. Eng., 124(1), pp. 32–41. [CrossRef]
Bhatnagar, N., Ramakrishnan, N., Naik, N. K., and Komanduri, R., 1995, “On the Machining of Fiber Reinforced Plastic (FRP) Composite Laminates,” Int. J. Mach. Tools Manuf., 35(5), pp. 701–716. [CrossRef]
Sahraie Jahromi, A., and Bahr, B., 2010, “An Analytical Method for Predicting Cutting Forces in Orthogonal Machining of Unidirectional Composites,” Compos. Sci. Technol., 70(16), pp. 2290–2297. [CrossRef]
Ehmann, K. F., Kapoor, S. G., DeVor, R. E., and Lazoglu, I., 1997, “Machining Process Modeling: A Review,” ASME J. Manuf. Sci. Eng., 119(4B), pp. 655–663. [CrossRef]
Sheikh-Ahmad, J., Twomey, J., Kalla, D., and Lodhia, P., 2007, “Multiple Regression and Committee Neural Network Force Prediction Models in Milling FRP,” Mach. Sci. Technol., 11(3), pp. 391–412. [CrossRef]
Karpat, Y., Bahtiyar, O., and Değer, B., 2012, “Milling Force Modelling of Multidirectional Carbon Fiber Reinforced Polymer Laminates,” Procedia CIRP, 1, pp. 460–465. [CrossRef]
Langella, A., Nele, L., and Maio, A., 2005, “A Torque and Thrust Prediction Model for Drilling of Composite Materials,” Compos. Part A: Appl. Sci. Manuf., 36(1), pp. 83–93. [CrossRef]
Mkaddem, A., Demirci, I., and Mansori, M. E., 2008, “A Micro–Macro Combined Approach Using FEM for Modelling of Machining of FRP Composites: Cutting Forces Analysis,” Compos. Sci. Technol., 68(15–16), pp. 3123–3127. [CrossRef]
Nayak, D., Bhatnagar, N., and Mahajan, P., 2005, “Machining Studies of UD-FRP Composites Part 2: Finite Element Analysis,“Mach. Sci. Technol., 9(4), pp. 503–528. [CrossRef]
Arola, D., and Ramulu, M., 1997, “Orthogonal Cutting of Fiber-Reinforced Composites: A Finite Element Analysis,” Int. J. Mech. Sci., 39(5), pp. 597–613. [CrossRef]
Ramesh, M. V., Seetharamu, K. N., Ganesan, N., and Sivakumar, M. S., 1998, “Analysis of Machining of FRPs Using FEM,” Int. J. Mach Tool Manuf., 38(12), pp. 1531–1549. [CrossRef]
Mahdi, M., and Zhang, L. C., 2001, “A Finite Element Model for the Orthogonal Cutting of Fiber-Reinforced Composite Materials,” J. Mater. Process. Technol., 113(1–3), pp. 373–377. [CrossRef]
Bhatnagar, N., Nayak, D., Singh, I., Chouhan, H., and Mahajan, P., 2004, “Determination of Machining-Induced Damage Characteristics of Fiber Reinforced Plastic Composite Laminates,” Mater. Manuf. Process., 19(6), pp. 1009–1023. [CrossRef]
Rao, G. V. G., Mahajan, P., and Bhatnagar, N., 2008, “Three-Dimensional Macro-Mechanical Finite Element Model for Machining of Unidirectional-Fiber Reinforced Polymer Composites,” Mater. Sci. Eng. A-Struct., 498(1–2), pp. 142–149. [CrossRef]
Santiuste, C., Soldani, X., and Miguélez, M. H., 2010, “Machining FEM Model of Long Fiber Composites for Aeronautical Components,” Compos. Struct., 92(3), pp. 691–698. [CrossRef]
Hashin, Z., and Rotem, A., 1973, “A Fatigue Failure Criterion for Fiber Reinforced Materials,” J. Compos. Mater., 7(4), pp. 448–464. [CrossRef]
Hashin, Z., 1981, “Fatigue Failure Criteria for Unidirectional Fiber Composites,” ASME J. Appl. Mech., 48(4), pp. 846–852. [CrossRef]
Mahdi, M., and Zhang, L. C., 2001, “An Adaptive Three-Dimensional Finite Element Algorithm for the Orthogonal Cutting of Composite Materials,” J. Mater. Process. Technol., 113(1–3), pp. 368–372. [CrossRef]
Nayak, D., Singh, I., Bhatnagar, N., and Mahajan, P., 2004, “An Analysis of Machining Induced Damages in FRP Composites—A Micromechanics Finite Element Approach,” AIP Conf. Proc., 712(1), pp. 327–331. [CrossRef]
Dandekar, C. R., and Shin, Y. C., 2008, “Multiphase Finite Element Modeling of Machining Unidirectional Composites: Prediction of Debonding and Fiber Damage,” ASME J. Manuf. Sci. Eng., 130(5), p. 051016. [CrossRef]
Calzada, K. A., Kapoor, S. G., DeVor, R. E., Samuel, J., and Srivastava, A. K., 2012, “Modeling and Interpretation of Fiber Orientation-Based Failure Mechanisms in Machining of Carbon Fiber-Reinforced Polymer Composites,” J. Manuf. Processes, 14(2), pp. 141–149. [CrossRef]
Santiuste, C., Olmedo, A., Soldani, X., and Miguélez, H., 2012, “Delamination Prediction in Orthogonal Machining of Carbon Long Fiber-Reinforced Polymer Composites,” J. Reinf. Plast. Compos., 31(13), pp. 875–885. [CrossRef]
Rao, G. V. G., Mahajan, P., and Bhatnagar, N., 2007, “Micro-Mechanical Modeling of Machining of FRP Composites—Cutting Force Analysis,” Compos. Sci. Technol., 67(3–4), pp. 579–593. [CrossRef]
Rao, G. V. G., Mahajan, P., and Bhatnagar, N., 2007, “Machining of UD-GFRP Composites Chip Formation Mechanism,” Compos. Sci. Technol., 67(11–12), pp. 2271–2281. [CrossRef]
Cundall, P. A., and Strack, O. D. L., 1979, “A Discrete Numerical Model for Granular Assemblies,” Geotechnique, 29(1), pp. 47–65. [CrossRef]
Iliescu, D., Gehin, D., Iordanoff, I., Girot, F., and Gutiérrez, M. E., 2010, “A Discrete Element Method for the Simulation of CFRP Cutting,” Compos. Sci. Technol., 70(1), pp. 73–80. [CrossRef]
Che, D., Han, P., Guo, P., and Ehmann, K., 2012, “Issues in Polycrystalline Diamond Compact Cutter-Rock Interaction From a Metal Machining Point of View—Part II: Bit Performance and Rock Cutting Mechanics,” ASME J. Manuf. Sci. Eng., 134(6), p. 064002. [CrossRef]
Khattab, A., Khattak, M. J., and Fadhil, I. M., 2011, “Micromechanical Discrete Element Modeling of Fiber Reinforced Polymer Composites,” Polym. Compos., 32(10), pp. 1532–1540. [CrossRef]
Wittel, F. K., Schulte-Fischedick, J., Kun, F., Kröplin, B.-H., and Frieß, M., 2003, “Discrete Element Simulation of Transverse Cracking During the Pyrolysis of Carbon Fibre Reinforced Plastics to Carbon/Carbon Composites,” Compos. Mater. Sci., 28(1), pp. 1–15. [CrossRef]
Yang, D., Sheng, Y., Ye, J., and Tan, Y., 2010, “Discrete Element Modeling of the Microbond Test of Fiber Reinforced Composite,” Compos. Mater. Sci., 49(2), pp. 253–259. [CrossRef]
Sakuma, K., Seto, M., Taniguchi, M., and Yokoo, Y., 1985, “Tool Wear in Cutting Carbon-Fiber-Reinforced Plastics: The Effect of Physical Properties of Tool Materials,” Bull. JSME, 28(245), pp. 2781–2788. [CrossRef]
Santhanakrishnan, G., Krishnamurthy, R., and Malhotra, S. K., 1989, “High Speed Steel Tool Wear Studies in Machining of Glass-Fibre-Reinforced Plastics,” Wear, 132(2), pp. 327–336. [CrossRef]
Inoue, H., Aoyama, E., Hirogaki, T., Ogawa, K., Matushita, H., Kitahara, Y., and Katayama, T., 1997, “Influence of Tool Wear on Internal Damage in Small Diameter Drilling in GFRP,” Compos. Struct., 39(1–2), pp. 55–62. [CrossRef]
Rawat, S., and Attia, H., 2009, “Wear Mechanisms and Tool Life Management of WC–Co Drills During Dry High Speed Drilling of Woven Carbon Fibre Composites,” Wear, 267(5–8), pp. 1022–1030. [CrossRef]
Shyha, I., Soo, S. L., Aspinwall, D. K., Bradley, S., Dawson, S., and Pretorius, C. J., 2010, “Drilling of Titanium/CFRP/Aluminium Stacks,” Key Eng. Mater., 447, pp. 624–633. [CrossRef]
Uhlmann, E., Lachmund, U., and Brücher, M., 2000, “Wear Behavior of HFCVD-Diamond Coated Carbide and Ceramic Tools,” Surf. Coat. Technol., 131(1–3), pp. 395–399. [CrossRef]
Schulze, V., Becke, C., and Pabst, R., 2011, “Specific Machining Forces and Resultant Force Vectors for Machining of Reinforced Plastics,” CIRP Ann.-Manuf. Technol., 60(1), pp. 69–72. [CrossRef]
Wang, X., Kwon, P. Y., Sturtevant, C., Kim, D., and Lantrip, J., 2012, “Tool Wear of Coated Drills in Drilling CFRP,” J. Manuf. Processes, 15(1), pp. 127–135. [CrossRef]
Wikipedia, 2013, “Wear,” http://en.wikipedia.org/wiki/Wear
Siddhpura, A., and Paurobally, R., 2012, “A Study of the Effects of Friction on Flank Wear and the Role of Friction in Tool Wear Monitoring,” Aust. J. Mech. Eng., 10(2), pp. 141–156. [CrossRef]
Weinert, K., and Kempmann, C., 2004, “Cutting Temperatures and Their Effects on the Machining Behaviour in Drilling Reinforced Plastic Composites,” Adv. Eng. Mater., 6(8), pp. 684–689. [CrossRef]
Palanikumar, K., and Davim, J. P., 2009, “Assessment of Some Factors Influencing Tool Wear on the Machining of Glass Fibre-Reinforced Plastics by Coated Cemented Carbide Tools,” J. Mater. Process. Technol., 209(1), pp. 511–519. [CrossRef]
Iliescu, D., Gehin, D., Gutierrez, M. E., and Girot, F., 2010, “Modeling and Tool Wear in Drilling of CFRP,” Int. J. Mach. Tools Manuf., 50(2), pp. 204–213. [CrossRef]
Sakuma, K., and Seto, M., 1983, “Tool Wear in Cutting Glass-Fiber-Reinforced Plastics: The Relation Between Fiber Orientation and Tool Wear,” Bull. JSME, 26(218), pp. 1420–1427. [CrossRef]
Lu, Z., Friedrich, K., Pannhorst, W., and Heinz, J., 1993, “Wear and Friction of a Unidirectional Carbon Fiber-Glass Matrix Composite Against Various Counterparts,” Wear, 162–164, pp. 1103–1113. [CrossRef]
Singh, I., Bhatnagar, N., and Viswanath, P., 2008, “Drilling of Uni-Directional Glass Fiber Reinforced Plastics: Experimental and Finite Element Study,” Mater. Des., 29(2), pp. 546–553. [CrossRef]
Mathew, J., Ramakrishnan, N., and Naik, N. K., 1999, “Investigations Into the Effect of Geometry of a Trepanning Tool on Thrust and Torque During Drilling of GFRP Composites,” J. Mater. Process. Technol., 91(1–3), pp. 1–11. [CrossRef]
Hocheng, H., and Tsao, C. C., 2006, “Effects of Special Drill Bits on Drilling-Induced Delamination of Composite Materials,” Int. J. Mach Tool. Manuf., 46(12–13), pp. 1403–1416. [CrossRef]
Tsao, C. C., 2008, “Thrust Force and Delamination of Core-Saw Drill During Drilling of Carbon Fiber Reinforced Plastics (CFRP),” Int. J. Adv. Manuf. Technol., 37(1–2), pp. 23–28. [CrossRef]
Lantrip, J., 2008, “New Tools Needed,” Cutt. Tool Eng., 60(8), pp. 72–84.
Malhotra, S. K., 1990, “Some Studies on Drilling of Fibrous Composites,” J. Mater. Process. Technol., 24, pp. 291–300. [CrossRef]
Chatelain, J., and Zaghbani, I., 2012, “A Comparison of Special Helical Cutter Geometries Based on Cutting Forces for the Trimming of CFRP Laminates,” Int. J. Mech., 6(1), pp. 52–59.
Ferreira, J. R., Coppini, N. L., and Levy Neto, F., 2001, “Characteristics of Carbon–Carbon Composite Turning,” J. Mater. Process. Technol., 109(1–2), pp. 65–71. [CrossRef]
Garrick, R. M., and Bunting, J. A., 2010, “Shielded PCD or PCBN Cutting Tools,” W.O. Patent 2,010,044,925.
Masuda, M., Kuroshima, Y., and Chujo, Y., 1993, “Failure of Tungsten Carbide-Cobalt Alloy Tools in Machining of Carbon Materials,” Wear, 169(2), pp. 135–140. [CrossRef]
Mills, B., 1996, “Recent Developments in Cutting Tool Materials,” J. Mater. Process.Technol., 56(1–4), pp. 16–23. [CrossRef]
Arul, S., Vijayaraghavan, L., Malhotra, S. K., and Krishnamurthy, R., 2006, “Influence of Tool Material on Dynamics of Drilling of GFRP Composites,” Int. J. Adv. Manuf. Technol., 29(7–8), pp. 655–662. [CrossRef]
An, S.-O., Lee, E.-S., and Noh, S.-L., 1997, “A Study on the Cutting Characteristics of Glass Fiber Reinforced Plastics With Respect to Tool Materials and Geometries,” J. Mater. Process. Technol., 68(1), pp. 60–67. [CrossRef]
Gilpin, A., 2009, “Tool Solutions for Machining Composites,” Reinf. Plast., 53(6), pp. 30–33. [CrossRef]
Kustas, F. M., Fehrehnbacher, L. L., and Komanduri, R., 1997, “Nanocoatings on Cutting Tools for Dry Machining,” CIRP Ann.–Manuf. Technol., 46(1), pp. 39–42. [CrossRef]
Hu, J., Chou, Y. K., Thompson, R. G., Burgess, J., and Street, S., 2007, “Characterizations of Nano-Crystalline Diamond Coating Cutting Tools,” Surf. Coat. Technol., 202(4–7), pp. 1113–1117. [CrossRef]
May, P. W., 1995, “CVD Diamond: A New Technology for the Future?,” Endeavour, 19(3), pp. 101–106. [CrossRef]
Köpf, A., Feistritzer, S., and Udier, K., 2006, “Diamond Coated Cutting Tools for Machining of Non-Ferrous Metals and Fibre Reinforced Polymers,” Int. J. Refract. Metals Hard Mater., 24(5), pp. 354–359. [CrossRef]
Zitoune, R., Krishnaraj, V., Sofiane Almabouacif, B., Collombet, F., Sima, M., and Jolin, A., 2012, “Influence of Machining Parameters and New Nano-Coated Tool on Drilling Performance of CFRP/Aluminium Sandwich,” Compos. Part B: Eng., 43(3), pp. 1480–1488. [CrossRef]
Ramkumar, J., Malhotra, S. K., and Krishnamurthy, R., 2002, “Studies on Drilling of Glass/Epoxy Laminates Using Coated High-Speed Steel Drills,” Mater. Manuf. Processes, 17(2), pp. 213–222. [CrossRef]
Murphy, C., Byrne, G., and Gilchrist, M., 2002, “The Performance of Coated Tungsten Carbide Drills When Machining Carbon Fibre-Reinforced Epoxy Composite Materials,” Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 216(2), pp. 143–152. [CrossRef]
Menand, S., and Gerbaud, L., 2005, “PDC Bit Technology Improvements Increase Efficiency, Bit Life,” Drilling Contractor Official Magazine, March/April, pp. 52–54.
Wise, J. L., Raymond, D. W., Cooley, C. H., and Bertagnolli, K., 2002, “Effects of Design and Processing Parameters on Performance of PDC Drag Cutters for Hard-Rock Drilling,” Trans.—Geotherm. Resour. Counc., 26, pp. 201–206.
Fang, Z. Z., Wang, X., Ryu, T., Hwang, K. S., and Sohn, H. Y., 2009, “Synthesis, Sintering, and Mechanical Properties of Nanocrystalline Cemented Tungsten Carbide—A Review,” Int. J. Refract. Metals Hard Mater., 27(2), pp. 288–299. [CrossRef]
Thiele, J. D., and N.Melkote, S., 1999, “Effect of Cutting Edge Geometry and Workpiece Hardness on Surface Generation in the Finish Hard Turning of AISI 52100 Steel,” J. Mater. Process. Technol., 94(2–3), pp. 216–226. [CrossRef]
Yen, Y.-C., Jain, A., and Altan, T., 2004, “A Finite Element Analysis of Orthogonal Machining Using Different Tool Edge Geometries,” J. Mater. Process. Technol., 146(1), pp. 72–81. [CrossRef]
Zhou, J. M., Walter, H., Andersson, M., and Stahl, J. E., 2003, “Effect of Chamfer Angle on Wear of PCBN Cutting Tool,” Int. J. Mach. Tools Manuf., 43(3), pp. 301–305. [CrossRef]
Dold, C., Henerichs, M., Bochmann, L., and Wegener, K., 2012, “Comparison of Ground and Laser Machined polycrystalline Diamond (PCD) Tools in Cutting Carbon Fiber Reinforced Plastics (CFRP) for Aircraft Structures,” Procedia CIRP, 1, pp. 178–183. [CrossRef]
Enomoto, T., and Sugihara, T., 2011, “Improvement of Anti-Adhesive Properties of Cutting Tool by Nano/Micro Textures and Its Mechanism,” Procedia Eng., 19, pp. 100–105. [CrossRef]
Velayudham, A., Krishnamurthy, R., and Soundarapandian, T., 2005, “Evaluation of Drilling Characteristics of High Volume Fraction Fibre Glass Reinforced Polymeric Composite,” Int. J. Mach. Tools Manuf., 45(4–5), pp. 399–406. [CrossRef]
Roberts, T., 2007, “Rapid Growth Forecast for Carbon Fibre Market,” Reinf. Plast., 51(2), pp. 10–13. [CrossRef]
MarketPublishers.com, 2013, “Carbon Fiber/CFRP Market Study Available at MarketPublishers.com,” http://www.compositesworld.com/news/carbon-fibercfrp-market-study-available-at-marketpublisherscom
Stewart, R., 2009, “Carbon Fibre Composites Poised for Dramatic Growth,” http://www.reinforcedplastics.com/view/1464/carbon-fibre-composites-poised-for-dramatic-growth/
Lucintel.com, 2010, “Growth Opportunities in Carbon Fibre Market 2010–2015,” http://www.lucintel.com/carbon_fiber_market.aspx

Figures

Grahic Jump Location
Fig. 1

Material properties of CFRPs governing the machinability of CFRPs [5]

Grahic Jump Location
Fig. 2

Machining of CFRPs: (a) milling; (b) drilling; and (c) trimming [40]

Grahic Jump Location
Fig. 3

Different drill types: (a) twist drill; (b) candle stick drill; and (c) saw drill [44]

Grahic Jump Location
Fig. 4

Experimental setup for vibration-assisted drilling [55]

Grahic Jump Location
Fig. 5

Experimental setup for ultrasonic vibration cutting [56]

Grahic Jump Location
Fig. 6

Apparatus for laser assisted turning of a metal matrix composites [59]

Grahic Jump Location
Fig. 7

Microscope image of a separated CFRP layer cut by laser ablation [61]

Grahic Jump Location
Fig. 8

Cause-effect-diagram of laser beam cutting of CFRP [62]

Grahic Jump Location
Fig. 9

Schematic diagram of jet cutting [66]

Grahic Jump Location
Fig. 10

The definitions of cutting variables [3]

Grahic Jump Location
Fig. 11

Cutting mechanisms in orthogonal machining of Gr/Ep [7]

Grahic Jump Location
Fig. 12

Chip formation mechanism during FRP machining [10]

Grahic Jump Location
Fig. 13

Bending failure in FRP cutting with 90 deg fiber orientation: (a) prior to failure and (b) after failure [72]

Grahic Jump Location
Fig. 14

Definition of deformation zones when fiber orientation is smaller than 90 deg [74]

Grahic Jump Location
Fig. 15

Force responses at CFRP-tool interface [18]

Grahic Jump Location
Fig. 16

Schematic illustration of the cutting mechanism for UD-FRP [84]

Grahic Jump Location
Fig. 17

Chip subject to cutting force [72]

Grahic Jump Location
Fig. 18

Cutting force versus fiber angle of an anisotropic material in experiment and simulation [94]

Grahic Jump Location
Fig. 19

The dominant effect of fiber orientation on failure mechanisms in CFRP machining: (a) 0 deg simulation result; (b) 90 deg simulation result; and (c) 135 deg simulation result [103]

Grahic Jump Location
Fig. 20

Effect of tool geometry on sub-surface damage: (a) rounded tool; and (b) sharp tool [103]

Grahic Jump Location
Fig. 21

Evolution of chip formation in 3D FEM modeling of CFRP cutting [104]

Grahic Jump Location
Fig. 22

Interfacial fracture for 45 deg fiber orientation: (a) before simulation; (b) after simulation; (c) cohesive zone after simulation [106]

Grahic Jump Location
Fig. 23

DEM model of microbond test [112]

Grahic Jump Location
Fig. 24

Chip formation in orthogonal cutting of UD-CFRPs at 90 deg: (a) DEM simulation, (b) experimental image [108]

Grahic Jump Location
Fig. 25

Chipping of the WC drill in high speed drilling of CFRP [116]

Grahic Jump Location
Fig. 26

Uniform pattern in flank wear on P30 tools [28]

Grahic Jump Location
Fig. 27

Micrograph of a worn-out PCD tool during CFRP machining [10]

Grahic Jump Location
Fig. 28

Micrographs of worn out nose region [114]

Grahic Jump Location
Fig. 29

Relative tool sliding direction with respect to fiber orientation of the composite [128]

Grahic Jump Location
Fig. 30

Comparison of core-saw drill and core drill: (a) core-saw drill and (b) core drill [132]

Grahic Jump Location
Fig. 31

Tool materials used in CFRP cutting [133]

Grahic Jump Location
Fig. 32

Relative hole quality with different tool materials [140]

Grahic Jump Location
Fig. 33

Tool materials used to drill polymeric composites [22]

Grahic Jump Location
Fig. 34

Multilayer diamond coating on a tungsten carbide tool [146]

Grahic Jump Location
Fig. 35

Modified geometries of diamond-carbide interface [151]

Grahic Jump Location
Fig. 36

Cutting edge preparations [154]

Grahic Jump Location
Fig. 37

Consumption of carbon fibers in the global market [159]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In