Research Papers

Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance

[+] Author and Article Information
P. Edwards

Boeing Research & Technology,
The Boeing Company,
Seattle, WA 98124
e-mail: Paul.D.Edwards2@boeing.com

A. O'Conner

Graduate Assistant
e-mail: apoc@u.washington.edu

M. Ramulu

Boeing-Pennell Professor of Engineering
e-mail: ramulum@u.washington.edu

Department of Mechanical Engineering,
University of Washington,
Seattle, WA 98195

1Corresponding author.

Manuscript received April 30, 2013; final manuscript received October 17, 2013; published online November 18, 2013. Assoc. Editor: Yung Shin.

J. Manuf. Sci. Eng 135(6), 061016 (Nov 18, 2013) (7 pages) Paper No: MANU-13-1195; doi: 10.1115/1.4025773 History: Received April 30, 2013; Revised October 17, 2013

This research evaluates the fatigue properties of Ti-6Al-4V specimens and components produced by Electron Beam additive manufacturing. It was found that the fatigue performance of specimens produced by additive manufacturing is significantly lower than that of wrought material due to defects such as porosity and surface roughness. However, evaluation of an actual component subjected to design fatigue loads did not result in premature failure as anticipated by specimen testing. Metallography, residual stress, static strength and elongation, fracture toughness, crack growth, and the effect of post processing operations such as machining and peening on fatigue performance were also evaluated.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.



Grahic Jump Location
Fig. 1

(a) Typical titanium aerospace bracket made by machining from wrought material and (b) optimized design based on the loading conditions leveraging the build capabilities of additive manufacturing. Drawings are not to scale.

Grahic Jump Location
Fig. 2

Schematic of specimen orientation in machine

Grahic Jump Location
Fig. 3

Ti-6Al-4V egg crate/bracket prototype parts. (a) As-deposited, (b) deposited with excess, and (c) machined.

Grahic Jump Location
Fig. 4

Component fatigue test setup

Grahic Jump Location
Fig. 5

(a) Microstructure cube and (b) high magnification microstructure of y-z plane

Grahic Jump Location
Fig. 6

Cross section at the surface of an ARCAM sample showing typical surface condition

Grahic Jump Location
Fig. 7

Residual stress measurements in the x-direction as a function of depth taken from the top (a) and bottom (b) of EBM part

Grahic Jump Location
Fig. 8

Fracture toughness specimen fracture surface

Grahic Jump Location
Fig. 9

Fatigue results R  = −0.2, Kt = 1.0

Grahic Jump Location
Fig. 10

ARCAM fatigue specimen fracture surfaces

Grahic Jump Location
Fig. 11

Fatigue crack growth rate results R = 0.1

Grahic Jump Location
Fig. 12

(a) Location of repeat fastener failure and (b) crack initiated under the failed fastener




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In