0
Research Papers

Automated Shape Optimization of Orienting Devices for Vibratory Bowl Feeders

[+] Author and Article Information
Daniel Hofmann

e-mail: daniel.hofmann@iwb.tum.de

Hongrong Huang

e-mail: info@iwb.tum.de

Gunther Reinhart

e-mail: gunther.reinhart@iwb.tum.de
Institute for Machine Tools and
Industrial Management (iwb),
Technische Universität München,
Boltzmannstraße 15,
Garching, Munich 85748, Germany

1Corresponding author.

Manuscript received April 18, 2013; final manuscript received July 11, 2013; published online September 16, 2013. Assoc. Editor: Xiaoping Qian.

J. Manuf. Sci. Eng 135(5), 051017 (Sep 16, 2013) (8 pages) Paper No: MANU-13-1170; doi: 10.1115/1.4025089 History: Received April 18, 2013; Revised July 11, 2013

Orienting devices for vibratory bowl feeders are still the most widely used system for the automated sorting and feeding of small parts. The design process of these orienting devices has recently been supported by simulation methods. However, this merely shifts the well-known trial-and-error-based adaption of the orienting device's geometry into virtual world. Yet, this does not provide optimal design and, furthermore, requires strong involvement of the developer due to manual shape variation. This paper proposes an optimization algorithm for the automated simulation-based shape optimization of orienting devices for vibratory bowl feeders. First, general formalisms to state the multiobjective optimization problem for arbitrary types of orienting devices and feeding parts are provided. Then, the implementation of the algorithm is described based on Bullet Physics Engine and random search optimization technique. Finally, comparison of simulation results with experimental data point out good accuracy and, thus, great potential of the developed shape optimization software.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Schmid, S., 2006, “Automatisierte Ordnungs- und Kommissionierzelle zur hochflexiblen Bereitstellung von Werkstücken in der Montage,” Jost Jetter, Heimsheim, IPA-IAO Forschung und Praxis 435.
Hesse, S., 2006, “Automatische Montagemaschinen,” Montage in der industriellen Produktion, B. W.Lotter, Hrsg., Springer, Heidelberg, Germany, pp. 219–307.
Yeong, M. Y., and De Vries, W. R., 1994, “A Methodology for Part Feeder Design,” Ann. CIRP, 43(1), pp. 19–22. [CrossRef]
Boothroyd, G., 2005, Assembly Automation and Product Design, Taylor & Francis, Boca Raton, FL.
Berkowitz, D. R., and Canny, J., 1996, “Designing Parts Feeders Using Dynamic Simulation,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’96), Minneapolis, MN, April 1996, IEEE, New York, pp. 1127–1132.
Boothroyd, G., and Ho, C., 1977, “Natural Resting Aspects of Parts for Automatic Handling,” ASME J. Eng. Ind., 99(2), pp. 314–317. [CrossRef]
Weiss, K., 1983, Entwicklung flexibler Ordnungssysteme für die Automatisierung der Werkstückhandhabung in der Klein- und Mittelserienfertigung, Springer, Berlin, Germany, IPA-IAO Forschung und Praxis 67.
Wiegley, J., Rao, A., and Goldberg, K., 1992, “Computing a Statistical Distribution of Stable Poses for a Polyhedron,” 30th Annual Allerton Conference on Communications, Control and Computing, Allerton, IL, September 1992, pp. 1–8.
Ngoi, B. K. A., Lim, L. E. N., and Lee, S. S. G., 1995, “Analysing the Natural Resting Aspects of a Complex Part,” Int. J. Prod. Res., 33(11), pp. 3163–3172. [CrossRef]
Mirtich, B., 1996, “Hybrid Simulation: Combining Constraints and Impulses,” Technical Report, Department of Computer Science, University of California, Berkley, CA.
Ngoi, B. K. A., Lim, L. E. N., and Ee, J. T., 1997, “Analysis of Natural Resting Aspects of Parts in a Vibratory Bowl Feeder—Validation of “Drop Test”,” Int. J. Adv. Manuf. Technol., 13, pp. 300–310. [CrossRef]
Goldberg, K., Mirtich, B., Zhuang, Y., Craig, J., Carlisle, B., and Canny, J., 1999, “Part Pose Statistics: Estimators and Experiments,” IEEE Trans. Rob. Autom., 15(5), pp. 849–857. [CrossRef]
Boothroyd, G., Poli, G., and Murch, L. E., 1976, “Handbook of Feeding and Orienting Techniques for Small Parts,” Department of Mechanical Engineering, University of Massachusetts, Amherst, MA.
Boothroyd, G., and Murch, L. E., 1970, “Performance of an Orienting Device Employed in Vibratory Bowl Feeders,” ASME J. Eng. Ind., 92(3), pp. 694–698. [CrossRef]
Frank, H.-E., 1975, Handhabungseinrichtungen, Krausskopf, Mainz, Germany.
Murch, L. E., and Poli, C., 1977, “Analysis of Feeding and Orienting Systems for Automatic Assembly—Part 2: Vibratory-Bowl Feeding Systems,” ASME J. Eng. Ind., 99(2), pp. 308–313. [CrossRef]
Chen, Y.-T., and Young, R. E., 1988, “PACIES: A Part Code Identification Expert System,” IIE Trans., 20(2), pp. 132–136. [CrossRef]
Ou-Yang, C., and Maul, G. P., 1993, “A Computer Analysis of Orientation Devices for Vibratory Bowl Feeders,” Int. J. Prod. Res., 31(3), pp. 555–578. [CrossRef]
Lim, L. E. N., Ngoi, B. K. A., Lee, S. S. G., Lye, S. W., and Tan, P. S., 1994, “A Computer-Aided Framework for the Selection and Sequencing of Orientating Devices for the Vibratory Bowl Feeder,” Int. J. Prod. Res., 32(11), pp. 2513–2524. [CrossRef]
Tan, P. S., Ngoi, B. K. A., Lee, S. S. G., and Lim, L. E. N., 1995, “A Knowledge-based Advisor for the Automatic Selection and Sequencing of Orienting Devices for Vibratory Feeding,” Eng. Applic. Artif. Intell., 8(1), pp. 1–13. [CrossRef]
La Brooy, R., and Jiang, C., 2009, “Expert System for Vibratory Bowl Feeder Tooling,” N. Eng. J., 12(2), pp. 13–17. Available at: http://www.iie.com.au/admin%5Cuploaddocs%5Cne_october_2009__for_web.pdf
Wolfsteiner, P., and Pfeiffer, F., 1997, “Dynamics of a Vibratory Feeder,” Proceedings of ASME Design Engineering Technical Conference (DETC '97), Sacramento, CA, September 1997, ASME, New York, pp. 1–9.
Gazic, Z., 2009, Nichtlineare Dynamik von Vibrationsförderern, VDI-Verlag, Düsseldorf, Germany, Fortschritt-Berichte VDI, Reihe, 13 Nr. 55.
Dallinger, N., Risch, T., and Nendel, K., 2012, “Simulation of Conveying Processes in Vibratory Conveyors,” Logistics J., 2012, pp. 1–5. [CrossRef]
Jiang, M. H., Chua, P. S. K., and Tan, F. L., 2003, “Simulation Software for Parts Feeding in a Vibratory Bowl Feeder,” Int. J. Prod. Res., 41(9), pp. 2037–2055. [CrossRef]
Chua, P. S. K., and Tan, F. L., 2006, “Dynamic Computer Simulation of Parts Feeding on a Vibratory Bowl Feeder,” J. Inst. Eng. (Malaysia), 67(2), pp. 55–60. Available at: http://dspace.unimap.edu.my/dspace/bitstream/123456789/13653/1/055-060_dynamic%20computer.pdf.pdf
Chen, R., Chen, L., Wang, X., and Chen, X., 2011, “Dynamic Design and Simulation of a Vibratory Hopper,” IEEE 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), Deng Feng, China, August 2011, IEEE, New York, pp. 3935–3938.
Berkowitz, D. R., and Canny, J., 1997, “A Comparison of Real and Simulated Designs for Vibratory Parts Feeding,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’97), Albuquerque, NM, April 1997, IEEE, New York, pp. 2377–2382.
Reinhart, G., and Hofmann, D., 2012, “Physically Based Simulation in Parts Feeding,” Werkstattstechnik Online, 102(6), pp. 435–439. Available at: http://www.werkstattstechnik.de/wt/article.php?data[article_id]=67965
Hofmann, D., and Reinhart, G., 2013, “Simulation-Based Design Method for Orienting Devices,” Zeitschrift für wirtschaftlichen Fabrikbetrieb ZWF, 108(3), pp. 148–153. Available at: http://www.zwf-online.de/ta003/na20120320125076/ar21342133957-16298/Simulationsgestuetzte-Auslegungsmethode-fuer-Ordnungsschikanen_archiv.html
Ahrens, H., 1983, Grundlagenuntersuchungen zur Werkstückzuführung mit Vibrationswendelförderern und Kriterien zur Geräteauslegung, VDI-Verlag, Düsseldorf, Germany, Fortschritt-Bericht VDI, Reihe 13, Nr. 23.
Khakbaz-Nejad, R. J., 2003, “The Effect of the Interaction of Part Geometry and Vibratory Feeding Parameters on the Feed Rate of Parts in a Vibratory Bowl Feeder,” Dissertation, The Ohio State University, Columbus, OH.
Risch, T., 2011, “Zweidimensionale Bewegungsformen in der Vibrationsfördertechnik,” Dissertation, Institut für Fördertechnik und Kunststoffe, Technische Universität Chemnitz, Chemnitz, Germany.
Loy, M., and Reinhart, G., 2008, “Flexible Feeding of Complex Parts,” 2nd CIRP Conference on Assembly Technologies and Systems (CATS 2008), Toronto, Ontario, September 2008, pp. 346–355.
Reinhart, G., and Loy, M., 2010, “Design of a Modular Feeder for Optimal Operating Performance,” CIRP J. Manuf. Sci. Tech., 3(3), pp. 191–195. [CrossRef]
Lee, K. M., and Qian, Y., 1998, “Intelligent Vision-Based Part-Feeding on Dynamic Pursuit of Moving Objects,” ASME J. Manuf. Sci. Eng., 120(3), pp. 640–647. [CrossRef]
Rimai, B. E., and Cipra, R. J., 2011, “On the Spatial Modeling of a Vibratory Micro-Pin Feeder Using Rigid-Body Dynamics,” Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2011), Vol. 4: 8th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A and B, Washington, DC, August 2011, pp. 247–255.
Murch, L. E., and Boothroyd, G., 1971, “Predicting Efficiency of Parts Orienting Systems,” Autom., 18, pp. 55–57.
Frank, H.-E., 1974, “Das Verhalten von Werkstücken bei automatisierter Handhabung in der Fertigung,” Dissertation, Universität Stuttgart, Stuttgart, Germany.
Rao, S. S., 2009, Engineering Optimization, 4th ed., Wiley, Hoboken, New Jersey.
Ashlock, D., 2006, Evolutionary Computation for Modeling and Optimization, Springer, Berlin, Interdisciplinary Applied Mathematics Series 200.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., 1983, “Optimization by Simulated Annealing,” Science, 220(4598), pp. 671–680. [CrossRef] [PubMed]
Khan, W. A., and Hayhurst, D. R., 2000, “Two- and Three-Dimensional Path Optimization for Production Machinery,” ASME J. Manuf. Sci. Eng., 122(1), pp. 244–252. [CrossRef]
Swift, K. G., and Redford, A. H., 1978, “Classification for Automatic Assembly of Small Products,” Ann. CIRP, 27(1), pp. 435–440. Available at: http://www.cirp.net/component/cirppubli/?task=searchpublic&year=1978

Figures

Grahic Jump Location
Fig. 1

Vibratory bowl feeder with mechanical orienting devices (adapted from Ref. [22])

Grahic Jump Location
Fig. 2

Sequence of passive and active working orienting devices

Grahic Jump Location
Fig. 3

Characteristics of mean conveying velocity v¯ and efficiency ε

Grahic Jump Location
Fig. 4

Overview of the simulation-based shape optimization

Grahic Jump Location
Fig. 5

Rotation matrices of a rotationally symmetrical part

Grahic Jump Location
Fig. 6

Consideration of d sequenced orienting devices for optimization of overall output

Grahic Jump Location
Fig. 7

Software architecture of the simulation-based shape optimization of orienting devices

Grahic Jump Location
Fig. 8

Overview of experimental approach

Grahic Jump Location
Fig. 9

Comparison of simulation and experimental data for the screw

Grahic Jump Location
Fig. 10

Optimization results for cuboids

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In