Research Papers

Method and Tool Design for Passive Sheet Metal Hydroforming on Conventional Single Action Presses

[+] Author and Article Information
Alina F. Budai

e-mail: alyna_bf@yahoo.com

Gheorghe Achimaş

e-mail: Gheorghe.Achimas@tcm.utcluj.ro
Department of Manufacturing Engineering,
Technical University of Cluj-Napoca,
Muncii Boulevard 103-105,
400641 Cluj-Napoca, Romania

Reimund Neugebauer

e-mail: Reimund.Neugebauer@iwu.fraunhofer.de

Marco Pröhl

e-mail: marco.proehl@iwu.fraunhofer.de
Fraunhofer Institute for Machine Tools and Forming Technology IWU,
Reichenhainer Str. 88, 09126 Chemnitz,

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the Journal of Manufacturing Science and Engineering. Manuscript received August 8, 2012; final manuscript received January 16, 2013; published online March 22, 2013. Assoc. Editor: Brad L. Kinsey.

J. Manuf. Sci. Eng 135(2), 021014 (Mar 22, 2013) (7 pages) Paper No: MANU-12-1242; doi: 10.1115/1.4023455 History: Received August 08, 2012; Revised January 16, 2013

Current sheet metal hydroforming processes require special equipment such as a hydroforming press with an external high pressure generator. This holds the barriers for entering the market high, especially for small and medium companies that cannot invest such an amount of money. In this article, a method and tool design is presented that allows setting up a sheet metal hydroforming process on single action presses without using special hydroforming equipment. The inner pressure for forming the part is generated by tool integrated pistons and results from the difference between ram and cushion force in relation to the part's projected surface. To explore the limits of the process, a tryout tool was manufactured for producing test samples of medical parts in DX54D and AlMg3 0.6 mm. After the experiments, the parts were measured and analyzed to investigate the accuracy of the process, in comparison with the simulation done beforehand. This work will enable small and medium enterprises (SMEs) to produce small series hydroformed parts in a cost efficient way on their conventional presses.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Neugebauer, R., Göschel, A., Sterzing, A., and Schieck, F., 2009, “Gas Forming With Integrated Heat Treatment for High Performance Steel-A Solution Approach for Press Hardened Tubes and Profiles,” 2nd International Conference on Hot Sheet Metal Forming of High-Performance Steel, Verlag Wissenschaftliche Scripten, Luleå, Auerbach, pp. 181–188.
Kim, J., Lei, L. P., and Kang, B. S., 2003, “Preform Design in Hydroforming of Automobile Lower Arm by FEM,” J. Mater. Process. Technol., 138, pp. 58–62. [CrossRef]
Meusel, J., Knoll, G., Tuzcu, S., Neugebauer, R., Schieck, F., Gentzen, J., Paul, A., and Müller, T., 2010, “Entwicklung von Leichtbaunockenwellen durch alternatives Herstellungsverfahren,” Vol. 4, VDI-Fachtagung Würzburg, VDI-Berichte 2115, VDI-Verlag, Düsseldorf, pp. 25–36.
Neugebauer, R., 2007, Hydro-Umformung, Springer-Verlag, Berlin, pp. 90–118.
Kang, B. S., Son, B. M., and Kim, J., 2004, “A Comparative Study of Stamping and Hydroforming Processes for an Automobile Fuel Tank Using FEM,” Int. J. Mach. Tools Manuf., 44, pp. 87–94. [CrossRef]
Parsa, M. H., and Darbandi, P., 2008, “Experimental and Numerical Analyses of Sheet Hydroforming Process for Production of an Automobile Body Part,” J. Mater. Process. Technol., 198, pp. 381–390. [CrossRef]
Werner, M., Pröhl, M., Hong, S., and Ryu, S., 2011, “Hot Gas Forming of Superplastic Sheet Metal,” wt Werkstattstechnik online, 101(10), pp. 680–685.
Lang, L., Danckert, J., and Nielson, K. B., 2005, “Multi-Layer Sheet Hydroforming: Experimental and Numerical Investigation Into the Very Thin Layer in the Middle,” J. Mater. Process. Technol., 170, pp. 524–535. [CrossRef]
Johannisson, T. G., 1989, “Flexforming– High-Pressure Sheet Metal Forming,” ABB Rev., 6, pp. 3–10.
Johannisson, T., 1989, “Flexible Forming for Automotive and Aerospace Applications,” Sheet Met. Ind., 66(10), pp. 515–518.
Johannisson, T. G., and Beaumont, P., 1988, “High Pressure Flexible Die Forming of Sheet Metal for the Aircraft Industry,” Sheet Met. Ind., 65(3), pp. 120–122.
Del Prete, A., De Vitis, A. A., and Franchi, R., 2012, “Tool Engage Investigation in Nickel Superalloy Turning Operations,” Key Eng. Mater., 504–506, pp. 1305–1310. [CrossRef]
Del Prete, A., Mazzotta, D., and Anglani, A., 2010, “Design Optimization Application in Accordance With Product and Process Requirements,” Adv. Eng. Software, 41(3), pp. 427–432. [CrossRef]
Koç, M., ed., 2008, Hydroforming for Advanced Manufacturing, Woodhead Publishing, Cambridge, UK.
Koc, M., Agcayazi, A., and Carsley, J., 2011, “An Experimental Study on Robustness and Process Capability of the Warm Hydroforming Process,” ASME J. Manuf. Sci. Eng., 133(2), p. 021008. [CrossRef]
Pirchl, C., and Herstelle, R., 2010, “Superplastisches Umformen von Aluminium—Ein ‘low-cost’-Verfahren zur Umformung von Blechteilen für kleine Serien,” last viewed on July 3, 2012, available at http://www.alu-spf.li/SPF_PSI.pdf
Oh, S. I., Jeon, B. H., Kim, H. Y., and Yang, J. B., 2006, “Applications of Hydroforming Processes to Automobile Parts,” J. Mater. Process. Technol., 174, pp. 42–55. [CrossRef]
Önder, E., and Tekkaya, A. E., 2008, “Numerical Simulation of Various Cross Sectional Workpieces Using Conventional Deep Drawing and Hydroforming Technologies,” Int. J. Mach. Tools Manuf., 48, pp. 532–542. [CrossRef]
Marciniak, Z., Duncan, J. L., and Hu, S. J., 2002, Mechanics of Sheet Hydroforming, Butterworth-Heinemann, Oxford, UK.
Groche, P., and Ertugrul, M., 2008, “Process Control at the Sealing Line During Sheet Metal Hydroforming,” Prod. Eng., 2(1), pp. 3–8. [CrossRef]
Kolleck, R., 2000, “Verfahren zum hydromechanischen Umformen von Blechen und Vorrichtung zur Durchführung des Verfahrens,” Patent No. DE 10028804 A1, pp. 1–8.
Siegert, K., and Aust, M., 2001, “Verfahren und Vorrichtung zum Tiefen mit nachfolgendem hydromechanischen Tiefziehen,” Patent No. DE 10153600 A1, pp. 1–6.
Aust, M., 2001, “Modified Hydromechanical Deep-Drawing,” Hydroforming of Tubes, Extrusions and Sheet Metals, Vol. 2, K.Siegert, ed., IFU-Stuttgart, Stuttgart, Germany, pp. 215–234.
Palumbo, G., 2013, “Hydroforming a Small Scale Aluminum Automotive Component Using a Layered Die,” Mater. Des., 44, pp. 365–373. [CrossRef]
Kreis, O., and Hein, P., 2001, “Manufacturing System for the Integrated Hydroforming, Trimming and Welding of Sheet Metal Pairs,” J. Mater. Process. Technol., 115, pp. 49–54. [CrossRef]
Zhang, S.-H., Zhou, L.-X., Wang, Z.-T., and Xu, Y., 2003, “Technology of Sheet Hydroforming With a Movable Female Die,” Int. J. Mach. Tools Manuf., 43, pp. 781–785. [CrossRef]
Kleiner, M., Hellinger, V., Homberg, W., and Klimmek, C., 1999, “Trends in Sheet Metal Hydroforming,” Hydroforming of Tubes, Extrusions and Sheet Metals, Vol. 1, K.Siegert, ed., IFU-Stuttgart, Stuttgart, Germany, pp. 249–260.
Liu, J., Ahmetoglu, M., and Altan, T., 2000, “Evaluation of Sheet Metal Formability, Viscous Pressure Forming (VPF) Dome Test,” J. Mater. Process. Technol., 98, pp. 1–6. [CrossRef]
Lianfa, Y., and Cheng, G., 2006, “A Simple Experimental Tooling With Internal Pressure Source Used for Evaluation of Material Formability in Tube Hydroforming,” J. Mater. Process. Technol., 180, pp. 310–317. [CrossRef]
Hosford, W. F., and Caddell, R. M., 2011, Metal Forming: Mechanics and Metallurgy, 4th ed., Cambridge University Press, New York, p. 39.
Seifert, M., 2008, “Temperiertes Innenhochdruck-Umformen von Rohren aus Magnesium- und Aluminiumlegierungen,” dissertation, Chemnitz University of Technology, Chemnitz, Germany, p. 123.


Grahic Jump Location
Fig. 1

Tool in the final phase of the hydroforming process

Grahic Jump Location
Fig. 8

Thickness distribution for DX54D after optical measurement

Grahic Jump Location
Fig. 9

Thickness distribution for AlMg3 after optical measurement

Grahic Jump Location
Fig. 7

Hydroformed test sample of AlMg3 in 0.6 mm

Grahic Jump Location
Fig. 6

Process flow chart

Grahic Jump Location
Fig. 5

Experimental tool setup

Grahic Jump Location
Fig. 4

Thickness distribution for AlMg3 after FE simulation

Grahic Jump Location
Fig. 3

Thickness distribution for DX54D after FE simulation

Grahic Jump Location
Fig. 2

Specific areas of the part's geometry

Grahic Jump Location
Fig. 10

Bottom radii values after conventional microscopy measurement for DX54D

Grahic Jump Location
Fig. 11

Bottom radii values after conventional microscopy measurement for AlMg3




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In