0
TECHNICAL PAPERS

Die Forging Stress Determination: A Dimensional Analysis Approach

[+] Author and Article Information
J. Navarrete, M. E. Noguez, J. Ramı́rez, G. Salas, T. Robert

Universidad Nacional Autónoma de México Faculatad de Quı́mica, Departamento de Ingenierı́a Metalúrgica, Ciudad Universitaria, 04510 México, D.F.

J. Manuf. Sci. Eng 123(3), 416-419 (Mar 01, 2000) (4 pages) doi:10.1115/1.1370498 History: Received March 01, 1999; Revised March 01, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Rowe, G., 1977, Principles of Industrial Metalworking Processes, Edward Arnold (Publishers) Ltd., pp. 19–21, p. 288.
Buckingham,  E., 1914, “On the Similar Systems: Illustrations of the Use of Dimensional Equations,” Phys. Rev. A, 4, 4, pp. 345–376.
Sedov, L. I., 1969, Similarity and Dimensional Methods in Mechanics, Academic Press, New York, N. Y., pp. 36–115.
Kline, J., 1965, Similitude and Approximation Theory, McGraw-Hill, New York, N. Y.
Del Rio, J., 1980, Deformacion Plastica de los metales, Gustavo Gilly, Barcelona, p. 215.
Fox, R. W., and McDonald, A. T., 1995, Introducción a la Mecanica de Fluidos, McGraw-Hill, Mexico, p. 317–345.
Anton, H., 1985, Introduction al Algebra Lineal, Ed. Limusa.
Streeter, V. L., & Wylie, E. B., 1988, Mecanica de los Fluidos, McGraw-Hill, México, p. 166–174.
Lange, K., 1985, Handbook of Metal Forming, McGraw-Hill, New York, p. 11.32.
Robert, N. T., 1995, “Determinación del coeficiente de fricción (μ) mediante compresión de anillos,” Tesis de Maestria, Facultad de Ingenieria, UNAM, México D. F.
Lange, K., Handbook of Metal Forming, McGraw-Hill, N. Y., pp. 11–26.
Altan, T., Oh, S., and Gegel, H. L., 1983, Metal Forming, American Society for Metals, Metals Park, OH, p. 60.
Altan, T., Oh, S., and Gegel, H. L., 1983, Metal Forming, American Society for Metals, Metals Park, OH, pp. 69 and 179–180.
Lee, Rong-Shean, Pan, T. C., and Ming-Ching, Pan, Chen, T. C. Pan, 1996, “Evaluation of the Preform Design of a Stepped Forging Part by Coupled Thermoviscoplastic Finite-element Analysis and Viscoplasticity,” J. Mater. Process. Technol., pp. 278–287.

Figures

Grahic Jump Location
Diagram of the obtained pieces showing their geometrical parameters
Grahic Jump Location
Dimensions of the closed dies used
Grahic Jump Location
Influence of the e/L number on p/σ0 number for forging Al 1100 at room temperature, with different Do/Di, μ≈0.25 and constant H/L=0.13 pieces
Grahic Jump Location
Influence of the e/L number on p0 number for forging Al 1100 at room temperature, with different Do/Di, μ≈0.25 and constant H/L=0.26 pieces
Grahic Jump Location
Influence of the e/L number on p0 number for forging Al 1100 at room temperature, with different Do/Di, μ≈0.25 and constant H/L=0.40 pieces
Grahic Jump Location
Influence of the e/L number on p0 number for forging Al 1100 at room temperature, with different Do/Di, μ≈0.25 and constant H/L=0.53 pieces
Grahic Jump Location
Influence of the e/L number on p0 number for forging Al 1100 at room temperature with different Do/Di, μ≈0.25 and constant H/L=0.66 pieces
Grahic Jump Location
Influence of the e/L number on p/σ0 number required for forging truncated conical pieces with Do/Di, and H/L variables when μ≈0.25
Grahic Jump Location
Comparison of the p0 numbers for the A (1015 steel at 1100°C 1112). B (Ti-6A1-4V at 982°C (13 et al.; ) and C (Al 2014 at 400°C (14 et al.; 1996)) industrial forgings shown with the e/L values calculated with Eq. (14), μ≈0.25 for the three cases

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In