Bryan, J. B., 1990, “International Status of Thermal Error Research (1990),” CIRP Ann.

[CrossRef], 39 (2), pp. 645–656.

Donmez, M. A., Blomquist, D. S., Hocken, R. J., Liu, C. R., and Barash, M. M., 1986, “A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation,” Precis. Eng.

[CrossRef], 8 (4), pp. 187–196.

Balsamo, A., Marques, D., and Sartori, S., 1990, “A Method for Thermal Deformation Corrections of CMMs,” CIRP Ann., 39 (1), pp. 557–560.

Chen, J. S., Yuan, J., Ni, J., and Wu, S. M., 1993, “Real-Time Compensation for Time-Variant Volumetric Error on a Machining Center,” ASME J. Eng. Ind.

[CrossRef], 115 (4), pp. 472–479.

Mou, J., Donmez, M. A., and Cetinkunt, S., 1995, “An Adaptive Error Correction Method Using Feature-Based Analysis Techniques for Machine Performance Improvement. Part I: Theory Derivation,” ASME J. Eng. Ind.

[CrossRef], 117 (4), pp. 584–590.

Mou, J., Donmez, M. A., and Cetinkunt, S., 1995, “An Adaptive Error Correction Method Using Feature-Based Analysis Techniques for Machine Performance Improvement. Part II: Experimental Verification,” ASME J. Eng. Ind.

[CrossRef], 117 (4), pp. 591–600.

Ni, J., 1997, “CNC Machine Accuracy Enhancement through Real-Time Error Compensation,” ASME J. Manuf. Sci. Eng.

[CrossRef], 119 (4B), pp. 717–725.

Chen, J. S., 1996, “A Study of Thermally Induced Machine Tool Errors in Real Cutting Conditions,” Int. J. Mach. Tools Manuf., 36 (12), pp. 1401–1411.

Yang, S., Yuan, J., and Ni, J., 1996, “The Improvement of Thermal Error Modeling and Compensation on Machine Tools by Neural Network,” Int. J. Mach. Tools Manuf.

[CrossRef], 36 (4), pp. 527–537.

Srinivasa, N., and Ziegert, J. C., 1997, “Prediction of Thermally Induced Time-Variant Machine Tool Error Maps Using a Fuzzy ARTMAP Neural Network,” ASME J. Manuf. Sci. Eng.

[CrossRef], 119 (4A), pp. 623–630.

Mou, J., 1997, “A Method of Using Neural Networks and Inverse Kinematics for Machine Tools Error Estimation and Correction,” ASME J. Manuf. Sci. Eng.

[CrossRef], 119 (2), pp. 247–254.

Wang, K. C., Tseng, P. C., and Lin, K. M., 2006, “Thermal Error Modeling of a Machining Center Using Grey System Theory and Adaptive Network-Based Fuzzy Inference System,” JSME Int. J., Ser. C, 49 (4), pp. 1179–1187.

Yang, H., and Ni, J., 2003, “Dynamic Modeling for Machine Tool Thermal Error Compensation,” ASME J. Manuf. Sci. Eng.

[CrossRef], 125 (2), pp. 245–254.

Yang, H., and Ni, J., 2005, “Dynamic Neural Network Modeling for Nonlinear, Nonstationary Machine Tool Thermally Induced Error,” Int. J. Mach. Tools Manuf., 45 (4–5), pp. 455–465.

Kurtoglu, A., 1990, “The Accuracy Improvement of Machine Tools,” CIRP Ann., 39 (1), pp. 417–419.

Lo, C. H., Yuan, J., and Ni, J., 1999, “Optimal Temperature Variable Selection by Grouping Approach for Thermal Error Modeling and Compensation,” Int. J. Mach. Tools Manuf., 39 (9), pp. 1383–1396.

Lee, J. H., and Yang, S. H., 2002, “Statistical Optimization and Assessment of a Thermal Error Model for CNC Machine Tools,” Int. J. Mach. Tools Manuf., 42 (1), pp. 147–155.

Lo, C. H., 1994, “Real-Time Error Compensation on Machine Tools Through Optimal Thermal Error Modeling,” Ph.D. thesis, the University of Michigan, Ann Arbor, MI.

Ma, Y., Yuan, J., and Ni, J., 1999, “A Strategy for the Sensor Placement Optimization for Machine Thermal Error Compensation,” American Society of Mechanical Engineers, Manufacturing Engineering Division , Atlanta, GA, Vol. 10 , pp. 629–637.

Ma, Y., 2001, “Sensor Placement Optimization for Thermal Error Compensation on Machine Tools,” Ph.D. thesis University of Michigan, Ann Arbor, MI.

Shah, P. C., and Udwadia, F. E., 1978, “A Methodology for Optimal Sensor Location for Identification of Dynamic System,” ASME J. Appl. Mech., 45 (1), pp. 188–196.

Juang, J. N., and Pappa, R. S., 1985, “Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction,” J. Guid. Control Dyn.

[CrossRef], 8 (5), pp. 620–627.

Salama, M., Rose, T., and Garba, J., 1987, “Optimal Placement of Excitations and Sensors for Verification of Large Dynamical Systems,” "*Proceedings of the 28th Structures, Structural Dynamics, and Materials Conference*", Monterey, CA, April 6–8, pp. 1024–1031.

Kammer, D. C., 1991, “Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures,” J. Guid. Control Dyn., 14 (2), pp. 251–259.

Moriwaki, T., 1988, “Thermal Deformation and Its Online Compensation of Hydrostatically Supported Precision Spindle,” CIRP Ann., 37 (1), pp. 283–286.

Jedrzejewski, I., Kaczmarek, J., Kowal, Z., and Winiarski, Z., 1990, “Numerical Optimization of Thermal Behavior of Machine Tools,” CIRP Ann., 39 (1), pp. 109–112.

Attia, M. H., and Fraser, S., 1999, “A Generalized Modeling Methodology for Optimized Real-Time Compensation of Thermal Deformation of Machine Tools and CMM Structures,” Int. J. Mach. Tools Manuf.

[CrossRef], 39 (6), pp. 1001–1016.

Fraser, S., Attia, M. H., and Osman, M. O. M., 2004, “Control-Oriented Modeling of Thermal Deformation of Machine Tools Based on Inverse Solution of Time-Variant Thermal Loads with Delayed Response,” ASME J. Manuf. Sci. Eng.

[CrossRef], 126 (2), pp. 286–296.

Coutinho, A. L. G. A., Landau, L., Wrobel, L. C., and Ebecken, F. F., 1989, “Modal Solution of Transient Heat Conduction Utilizing Lanczos Algorithm,” Int. J. Numer. Methods Eng., 28 (1), pp. 13–25.

Dos Santos, F. C., Coutinho, A. L. G. A., and Landau, L., 1990, “New Load Dependent Methods for Modal Solution of Transient Heat Conduction,” "*Proceedings of the International Conference on Advanced Computational Methods in Heat Transfer*", Southampton, UK, July 17–19, Vol. 1 , pp. 51–59.

Matsuo, M., Yasui, T., Inamura, T., and Matsumura, M., 1986, “High-Speed Test of Thermal Effects for a Machine-Tool Structure Based on Modal Analysis,” Precis. Eng.

[CrossRef], 8 (2), pp. 72–78.

Weck, M., Mckeown, P., Bonse, R., and Herbst, U., 1995, “Reduction and Compensation of Thermal Errors in Machine Tools,” CIRP Ann., 44 (2), pp. 589–598.

Ahn, J. Y., and Chung, S. C., 2004, “Real-Time Estimation of the Temperature Distribution and Expansion of a Ball Screw System Using an Observer,” Proc. Inst. Mech. Eng., Part B, 218 (12), pp. 1667–1681.