To conduct B-spline curve machining, first, B-spline tool paths with feed rates are planned; and second, the B-spline interpolator generates tool trajectories in real-time based on the paths fed into the computer numerically controlled (CNC) controller. Currently, the paths are often planned geometrically with a nonarc-length parameter. Literally, the interpolator can process B-spline paths with the arc-length parameter well, while it sometimes is challenged to work with the nonarc-length parameterized B-spline paths. As a consequence, it is difficult to ensure high accuracy of the tool trajectories in B-spline machining in terms of their corresponding paths; especially, if the feed is very high, smooth tool kinematics cannot be well maintained. To root out these problems, a new type of tool path—piecewise B-spline tool paths with the arc-length parameter—is first proposed in this work. Given a B-spline path with a nonarc-length parameter, it is accurately converted into a B-spline path with an arc-length parameter before sending it into the CNC controller. Furthermore, if the prescribed feed rate is very high and the arc-length parameterized B-spline path is disqualified, it is split into pieces represented with distinct arc-length parameterized B-spline paths in different feed rates. The main advantage of these piecewise paths is that they can eliminate the problems encountered by the existing B-spline interpolator with input of nonarc-length parameterized B-spline paths. Therefore, the piecewise arc-length parameterized B-spline paths are a genuine solution to high feed-and-accuracy B-spline machining.