Cutter/Workpiece Engagement Feature Extraction from Solid Models for End Milling

[+] Author and Article Information
Derek Yip-Hoi, Xuemei Huang

Department of Mechanical Engineering, University of British Columbia, 2324 Main Mall, Vancouver, BC V6T 1Z4, Canada

J. Manuf. Sci. Eng 128(1), 249-260 (Oct 12, 2004) (12 pages) doi:10.1115/1.1948395 History: Received March 08, 2004; Revised October 12, 2004

Accurate process modeling requires the calculation of cutter/workpiece engagement (CWE) geometry. This is challenging when the geometry of the workpiece is changing unpredictably as is the case for most machined components of moderate complexity. Solid modelers are increasingly being considered as a computational engine for performing these calculations. This is largely due to increased robustness and computing efficiency that is evolving within this technology. The vast majority of reported research using solid modelers focuses on the domain of 212D machining with flat end mills. While significant there remain restrictions in the types of in-process workpiece geometry that can be processed with these approaches. In particular, they assume a constant axial engagement for a connected set of tool paths. This assumption cannot be made when the initial workpiece geometry is nonrectangular prismatic stock, when multiple setups are machined and when tool changes introduce tools of different diameters. In these cases the depth of engagement can vary over a single rotation of the cutter even though there is no axial feed motion. In this paper a solid modeling based solution is presented for calculating CWE geometry when multiple setups and tool changes are considered. Orthogonal setups and flat end mills are assumed so as to preclude cutter engagement on inclined workpiece faces. Intersections between a semi-cylinder representing the cutting tool and the workpiece are performed so as to generate the CWE geometry. Cutter Engagement Features (ceF) are used to characterize this geometry. Several classes of ceFs are defined to support this approach. The process of identifying ceFs is presented as a feature extraction problem. Algorithms for ceF extraction and parametrization are provided in this paper and validated using a test part. This is a new application for features which have traditionally been used to define final part geometry or in-process geometry between material removal steps. The results obtained validate the extraction algorithms presented. This work also extends the capabilities of solid modeling techniques for calculating CWE geometry.

Copyright © 2006 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.



Grahic Jump Location
Figure 1

Cutter engagements for 212D milling

Grahic Jump Location
Figure 2

Engagements with varying DOCs

Grahic Jump Location
Figure 3

CWE zone for analytical force prediction model (adapted from Ref. 9)

Grahic Jump Location
Figure 4

Machining feature classification for process modeling

Grahic Jump Location
Figure 5

Cutter engagement feature

Grahic Jump Location
Figure 6

Classes of typical ceFs

Grahic Jump Location
Figure 7

Generating a parametric representation for ceFs

Grahic Jump Location
Figure 8

Extraction of ceF boundary using advancing semi cylinder technique

Grahic Jump Location
Figure 9

Decomposition of cutter engagement feature in parameterized form

Grahic Jump Location
Figure 10

Test part for validating ceFs

Grahic Jump Location
Figure 11

Extracted ceFs for test part

Grahic Jump Location
Figure 12

Setup at UBC’s manufacturing automation lab for machining ceFs

Grahic Jump Location
Figure 13

Experimental and predicted cutting forces for ceFs 5 (left) and 7 (right) on test part

Grahic Jump Location
Figure 14

Force invariant feature extraction

Grahic Jump Location
Figure 15

CWE decomposition for cast and forged workpieces




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In