0
TECHNICAL PAPERS

Novel Sensor Fabrication Using Direct-Write Thermal Spray and Precision Laser Micromachining

[+] Author and Article Information
Q. Chen, T. Tong, J. P. Longtin

Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794–2300

S. Tankiewicz, S. Sampath, R. J. Gambino

Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794–2275

J. Manuf. Sci. Eng 126(4), 830-836 (Feb 04, 2005) (7 pages) doi:10.1115/1.1813481 History: Received May 22, 2003; Revised March 29, 2004; Online February 04, 2005
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mo,  Y. W., Okawa,  Y., Tajima,  M., Nakai,  T., Yoshiike,  N., and Natukawa,  K., 2001, “Micro-Machined Gas Sensor Array Based on Metal Film Micro-Heater,” Sens. Actuators B, 79, pp. 175–181.
Guidi,  V., Cardinali,  G. C., Dori,  L., Faglia,  G., Ferroni,  M., Martinelli,  G., Nelli,  P., and Sberveglieri,  G., 1998, “Thin-Film Gas Sensor Implemented on a Low-Power-Consumption Micromachined Silicon Structure,” Sens. Actuators B, 49, pp. 88–92.
Pike,  A., and Gardner,  J. W., 1997, “Thermal Modelling and Characterization of Micropower Chemoresistive Silicon Sensors,” Sens. Actuators B, 45, pp. 19–26.
Lei,  J. F., and Will,  H. A., 1998, “Thin-Film Thermocouples and Strain-Gauge Technologies for Engine Applications,” Sens. Actuators, A, 65, pp. 187–193.
Gregory,  O. J., Slot,  A. B., Amons,  P. S., and Crisman,  E. E., 1997, “High Temperature Strain Gages Based on Reactively Sputtered AlNx Thin Films,” Surf. Coat. Technol., 88, pp. 79–89.
Dobrzanski,  L., and Piotrowski,  J., 1998, “Micromachined Silicon Thermopile and Thermal Radiators Using Porous Silicon Technology,” IEE Proc.: Optoelectron., 145, pp. 307–311.
Baltes,  H., Paul,  O., and Brand,  O., 1998, “Micromachined Thermally Based CMOS Microsensors,” Proc. IEEE, 86, pp. 1660–1678.
Herman,  H., Sampath,  S., and Mccune,  R., 2000, “Thermal Spray: Current Status and Future Trends,” MRS Bull., 25, pp. 17–25.
Sampath,  S., and Mccune,  R., 2000, “Thermal-Spray Processing of Materials,” MRS Bull., 25, pp. 12–14.
Sampath,  S., Herman,  H., Shimoda,  N., and Saito,  T., 1995, “Thermal Spray Processing of FGMs,” MRS Bull., 20, pp. 27–31.
Sampath,  S., Longtin,  J. P., Gambino,  R. J., and Herman,  H., 2000, “Direct-Write Thermal Spraying of Multilayer Electronics and Sensor Structures,” Mater. Res. Soc. Symp. Proc., 7, pp. 714–717.
Fasching,  M., Prinz,  F. B., and Weiss,  L. E., 1995, “Smart Coatings—a Technical Note,” J. Thermal Spray Technol., 4, pp. 133–136.
Bäuerle, D., 1996, Laser Processing and Chemistry, Springer, Berlin.
Liu,  X., Du,  D., and Mourou,  G., 1997, “Laser Ablation and Micromachining With Ultrashort Laser Pulses,” IEEE J. Quantum Electron., 33, pp. 1706–1716.
Nolte,  S., Momma,  C., Jacobs,  H., Tunnermann,  A., Chichkov,  B. N., Wellegehausen,  B., and Welling,  H., 1997, “Ablation of Metals by Ultrashort Laser Pulses,” J. Opt. Soc. Am. B, 14, pp. 2716–2722.
Momma,  C., Chichkov,  B. N., Nolte,  S., Vonalvensleben,  F., Tunnermann,  A., Welling,  H., and Wellegehausen,  B., 1996, “Short-Pulse Laser Ablation of Solid Targets,” Opt. Commun., 129, pp. 134–142.
Chichkov,  B. N., Momma,  C., Nolte,  S., Vonalvensleben,  F., and Tunnermann,  A., 1996, “Femtosecond, Picosecond, and Nanosecond Laser Ablation of Solids,” Appl. Phys. A: Mater. Sci. Process., 63, pp. 109–115.
Pronko,  P. P., Vanrompay,  P. A., Horvath,  C., Loesel,  F., Juhasz,  T., Liu,  X., and Mourou,  G., 1998, “Avalanche Ionization and Dielectric Breakdown in Silicon with Ultrafast Laser Pulses,” Phys. Rev. B, 58, pp. 2387–2390.
Perry,  M. D., Stuart,  B. C., Banks,  P. S., Feit,  M. D., Yanovsky,  V., and Rubenchik,  A. M., 1999, “Ultrashort-Pulse Laser Machining of Dielectric Materials,” J. Appl. Phys., 85, pp. 6803–6810.
Lenzner,  M., Kruger,  J., Sartania,  S., Cheng,  Z., Spielmann,  C., Mourou,  G., Kautek,  W., and Krausz,  F. 1998, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett., 80, pp. 4076–4079.
Ashkenasi,  D., Varel,  H., Rosenfeld,  A., Noack,  F., and Campbell,  E. E. B., 1997, “Pulse-Width Influence on Laser Structuring of Dielectrics,” Nucl. Instrum. Methods Phys. Res. B, 122, pp. 359–363.
Bor,  Z., Racz,  B., Szabo,  G., Xenakis,  D., Kalpouzos,  C., and Fotakis,  C., 1995, “Femtosecond Transient Reflection From Polymer Surfaces During Femtosecond UV Photoablation,” Appl. Phys. A: Mater. Sci. Process., 60, pp. 365–368.
Ihlemann,  J., Scholl,  A., Schmidt,  H., and Wolffrottke,  B., 1995, “Nanosecond and Femtosecond Excimer-Laser Ablation of Oxide Ceramics,” Appl. Phys. A: Mater. Sci. Process., 60, pp. 411–417.
Sun,  J., Longtin,  J. P., and Norris,  P. M., 2001, “Ultrafast Laser Micromachining of Silica Aerogels,” J. Non-Cryst. Solids, 281, pp. 39–47.
Sun, J., Fan C. H., Longtin J. P., and Sampath S., 2001, “Micromachining of Vias Through Thermal-Sprayed Multilayer Structures Using Ultrafast Lasers,” Proc. 2001 ASME International Mechanical Engineering Congress and Exposition, ASME, New York, pp. 1801–1806.
Sun, J., Fan, C. H., Longtin, J. P., and Sampath, S., 2001, “Laser Processing of Thermal Spray Patterns Using Femtosecond Pulses,” Proc. 35th National Heat Transfer Conference, ASME, New York, NHTC01-1823, pp. 1807–1817.
Gardner, J. W., 1994, Microsensors: Principles and Applications, Wiley, New York.
Dally, J. W., and Riley, W.F., 1991, Experimental Stress Analysis, McGraw-Hill, New York.
Window, A. L., and Holister, G. S., 1992, Strain Gauge Technology, Elsevier, New York.

Figures

Grahic Jump Location
Schematics of (a) experiment setup and (b) ultrafast laser patterning
Grahic Jump Location
(a) SEM image of laser-cut pattern, (b) LCTS microheater with uniform pattern, and (c) LCTS microheater with nonuniform pattern
Grahic Jump Location
Microheater measurement results (a) center temperature versus power for uniform pattern and (b) temperature distribution for nonuniform pattern
Grahic Jump Location
(a) Grid pattern, (b) bare LCTS strain-gauge sample, and (c) embedded LCTS strain-gauge sample
Grahic Jump Location
Schematic of experiment setup for sensitivity measurement
Grahic Jump Location
Results of sensitivity measurement for samples in Group A and B
Grahic Jump Location
Comparison of bare and embedded strain-gauge performances
Grahic Jump Location
Results of (a) TCR and (b) long-term stability tests

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In