0
TECHNICAL PAPERS

Microforming: Experimental Investigation of the Extrusion Process for Micropins and its Numerical Simulation Using RKEM

[+] Author and Article Information
Jian Cao, Neil Krishnan, Zhong Wang, Hongsheng Lu, Wing K. Liu, Anthony Swanson

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208

J. Manuf. Sci. Eng 126(4), 642-652 (Feb 04, 2005) (11 pages) doi:10.1115/1.1813468 History: Received March 29, 2004; Revised August 02, 2004; Online February 04, 2005
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Geiger,  M., Kleiner,  M., Eckstein,  R., Tiesler,  N., and Engel,  U., 2001, “Microforming,” CIRP Ann., 50(2), pp. 445–462.
Tiesler, N., and Engel, U., 2000, “Microforming—Effects of Minaturization,” Metal Forming 2000, Balkema, Rotterdam, pp. 355–360.
Raulea, L. V., Govaert, L. E., and Baaijens, F. P. T., 1999, “Grain and Specimen Size Effects in Processing Metal Sheets,” Advanced Technology of Plasticity, Proc. of 6th ICTP, Sept. 19–24, 2 , pp. 939–944.
Geiger, M., Messner, A., Engel, U., Kals, R., and Vollersten, F., 1995, “Design of Microforming Processes—Fundamentals, Material Data and Friction Behavior,” Proc. of 9th International Cold Forging Congress, Solihull, UK, May, pp. 155–163.
Engel, U., Egerer, E., and Geiger, M., 2003, “Production of Microparts by Cold and Warm Forging,” Proc. of 1st International Conference on Micro and Nano Technology, Copenhagen, Denmark, Nov., pp. 69–72.
Balendra,  R., and Qin,  Y., 2004, “Research Dedicated to the Development of Advanced Metal Forming Technologies,” J. Mater. Process. Technol., 145, pp. 144–152.
Saotome,  Y., and Iwazaki,  H., 2001, “Superplastic Backward Microextrusion of Microparts for Micro-Electro-Mechanical Systems,” J. Mater. Process. Technol., 119, pp. 307–311.
Hosford, W. F., and Caddell, R. M., 1983, Metal Forming: Mechanics and Metallurgy, 2nd Edition, Prentice-Hall, Engelwood Cliffs, NJ, pp. 181–187.
Groover, M. P., 1996, Fundamentals of Modern Manufacturing: Materials, Processes and Systems, Prentice Hall, Englewood Cliffs, NJ, pp. 479–482.
Bhattacharyya,  D., Richards,  P. J., and Somashekar,  A. A., 1992, “Modeling of Metal-Extrusion Using the Phoenics Package,” J. Mater. Process. Technol., 35, pp. 93–111.
Huh,  H., and Lee,  C. H., 1993, “Eulerian Finite-Element Modeling of the Extrusion Process for Work-Hardening Materials With the Extended Concept of Limit Analysis,” J. Mater. Process. Technol., 38, pp. 51–61.
Reinikainen,  T., Welo,  T., Korhonen,  A. S., and Kivivuori,  S., 1994, “Comparison of Two Commercial FEM Codes in Cold-Extrusion Simulation,” J. Mater. Process. Technol., 42, pp. 137–146.
Alexandrov,  S., Mishuris,  G., Miszuris,  W., and Sliwa,  R. E., 2001, “On the Dead Zone Formation and Limit Analysis in Axially Symmetric Extrusion,” Int. J. Mech. Sci., 43, pp. 367–379.
Arentoft,  M., Gronostajski,  Z., Niechajowicz,  A., and Wanheim,  T., 2000, “Physical and Mathematical Modeling of Extrusion Processes,” J. Mater. Process. Technol., 106, pp. 2–7.
Sheppard,  T., 1999, “Temperature Changes Occurring During Extrusion of Metals: Comparison of Bulk, Numerical, and Integral Profile Predictions With Experimental Data,” Mater. Sci. Technol., 15, pp. 459–463.
Chanda,  T., Zhou,  J., and Duszczyk,  J., 2001, “A Comparative Study on Iso-Speed Extrusion and Isothermal Extrusion of 6061 Al Alloy Using 3D FEM Simulation,” J. Mater. Process. Technol., 114, pp. 145–153.
Li,  L., Zhou,  J., and Duszczyk,  J., 2004, “Prediction of Temperature Evolution During the Extrusion of 7075 Aluminum Alloy at Various Ram Speeds by Means of 3D FEM Simulation,” J. Mater. Process. Technol., 145, pp. 360–370.
Chen, J. S., and Lu, H., 2002, “A Double Grid Method for Modeling of Microstructure Evolution,” Proc. of Fifth World Congress on Computational Mechanics, Vienna, Austria, July.
Liu, W. K., Han, W., Lu, H., Li, S., and Cao, J., 2004, “Reproducing Kernel Element Method: Part I. Theoretical Formulation,” Comput. Methods Appl. Mech. Eng. (in press).
Li, S., Lu, H., Han, W., Liu, W. K., and Simkins, D. C., 2004, “Reproducing Kernel Element, Part II. Global Conforming Im/Cn Hierarchy,” Comput. Methods Appl. Mech. Eng. (in press).
Lu, H., Li, S., Simkins, D. C., Liu, W. K., and Cao, J., 2004, “Reproducing Kernel Element Method Part III. Generalized Enrichment and Applications,” Comput. Methods Appl. Mech. Eng. (in press).
Chen,  J. S., Wu,  C. T., Yoon,  S., and You,  Y., 2001, “A Stabilized Conforming Nodal Integration for Galerkin Meshfree Methods,” Int. J. Numer. Methods Eng., 50, pp. 435–466.
Park,  J. S., and Hwang,  S. M., 1991, “Automatic Remeshing in Finite Element Simulation of Metal Forming Processes by Guide Grid Method,” J. Mater. Process. Technol., 27, pp. 73–89.
Belytschko,  T., Lu,  Y. Y., and Gu,  L., 1994, “Element-Free Galerkin Methods,” Int. J. Numer. Methods Eng., 37, pp. 229–256.
Liu,  W. K., Jun,  S., and Zhang,  Y. F., 1995, “Reproducing Kernel Particle Methods,” Int. J. Numer. Methods Fluids, 20, pp. 1081–1106.
Liu,  W. K., and Jun,  S., 1998, “Multiple-Scale Reproducing Kernel Particle Methods for Large Deformation Problems,” Int. J. Numer. Methods Eng., 41(7), pp. 1339–1362.
Chen,  J. S., Pan,  C., Wu,  C. T., and Liu,  W. K., 1996, “Reproducing Kernel Particle Methods for Large Deformation Analysis of Nonlinear Structures,” Comput. Methods Appl. Mech. Eng., 139, pp. 195–227.
Lu, H., Liu, W. K., Chen, J. S., and Cao, J., 2003, “Consistent Smoothing Technique and Treatment of Material Discontinuity in the Reproducing Kernel Element Method,” submitted to the Int. J. Numer. Methods Eng.

Figures

Grahic Jump Location
Examples of various metallic microparts used in industry
Grahic Jump Location
(a) Microstructure of brass sample after heat treatment at 610°C for 1 h, grain size=87 μm; (b) microstructure of brass sample after heat treatment at 700°C for 1 h, grain size=211 μm
Grahic Jump Location
Schematic of extruded pin with dimensions for the two cases: larger pin and smaller pin
Grahic Jump Location
(a) Deformed grains for the larger pin, initial grain size=87 μm; (b) deformed grains for the smaller pin, initial grain size=87 μm (scale bar=50 μm)
Grahic Jump Location
Deformed grains for the larger pin, initial grain size=211 μm; deformed grains for the smaller pin, initial grain size=211 μm (scale bar=50 μm)
Grahic Jump Location
True stress versus true strain (211 μm grain size)
Grahic Jump Location
True stress versus true strain (all grain sizes)
Grahic Jump Location
Segmented die used for extrusion of micropins
Grahic Jump Location
Forming assembly and the tensile loading substage
Grahic Jump Location
Force-displacement response for extrusion of 32 μm grain-size sample using smooth die
Grahic Jump Location
Force-displacement response for extrusion of 87 μm grain-size sample using smooth die
Grahic Jump Location
Force-displacement response for extrusion of 211 μm grain-size sample using smooth die
Grahic Jump Location
Average and rms surface roughness after each test at the 1.5 mm region of the smooth die
Grahic Jump Location
Average and rms surface roughness after each test at the 1.0 mm region of the smooth die
Grahic Jump Location
Force-displacement response for extrusion of 32 μm grain-size sample using rough die
Grahic Jump Location
Force-displacement response for extrusion of 87 μm grain-size sample using rough die
Grahic Jump Location
Force-displacement response for extrusion of 211 μm grain-size sample using rough die
Grahic Jump Location
Average and rms surface roughness after each test at the 1.5 mm region of the rough die
Grahic Jump Location
Average and rms surface roughness after each test at the 1.0 mm region of the rough die
Grahic Jump Location
Sample of the deformed pins
Grahic Jump Location
3D hexahedral sub-domain element
Grahic Jump Location
Representative domain of node L
Grahic Jump Location
Deformations of extrusion in 2D. The development of the hourglass mode can be clearly seen.
Grahic Jump Location
Subdivision and its center in the representative domain of node L
Grahic Jump Location
Comparison of equivalent plastic strain using (a) ABAQUS Explicit and (b) the RKEM
Grahic Jump Location
Comparison of the force-displacement response for ABAQUS Explicit, the RKEM, and experimental results
Grahic Jump Location
The influence domains of nodes near the material interface
Grahic Jump Location
(a) Discretization of material interface in 2-D (b) Shape function of node I (c) The x-derivative of shape function of node I on the side of material B (d) The x-derivative of shape function of node I on the side of material A

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In