0
TECHNICAL PAPERS

Radiation Thermometry at a High-Speed Turning Process

[+] Author and Article Information
Bernhard Müller, Ulrich Renz

Lehrstuhl für Wärmeübertragung und Klimatechnik (WÜK), RWTH Aachen, Eilfschornsteinstr. 18, 52056 Aachen, Germanye-mail: www@wuek.rwth-aachen.de

Stefan Hoppe, Fritz Klocke

Lehrstuhl für Technologie der Fertigungsverfahren (WZL), RWTH Aachen, Steinbachstr. 53, 52074 Aachen, Germanye-mail: tf@wzl.rwth-aachen.de

J. Manuf. Sci. Eng 126(3), 488-495 (Sep 07, 2004) (8 pages) doi:10.1115/1.1763188 History: Received January 01, 2004; Online September 07, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

König,  W., 1987, “Chancen und Restriktionen der Hochgeschwindigkeitszerspanung,” VDI-Z,130(6), pp. 35–41.
Schmidt,  A. O., 1953, “Temperaturmessungen am Werkstück, Werkzeug und Span,” Werkstattstechnik und Maschinenbau,43(8), pp. 345–350.
Schulz,  H., 1989, “Aspects in Cutting Mechanism in High Speed Cutting,” CIRP Ann., 38(1), pp. 51–54.
Klocke, F., and Hoppe, S., 2001, “Mechanisms of Chip Formation in High Speed Cutting,” Scientific Fundamentals of HSC, H. Schulz, ed., Carl Hanser Verlag, München—Wien, pp. 1–10.
Müller,  B., and Renz,  U., 2001, “Development of a Fast Fiber-Optic Two-Color Pyrometer for the Temperature Measurement of Surfaces With Varying Emissivities,” Rev. Sci. Instrum., 72(8), pp. 3366–3374.
Lo Casto,  S., Lo Valvo,  E., and Micari,  F., 1989, “Measurement of Temperature Distribution Within Tool in Metal Cutting. Experimental Tests and Numerical Analysis,” J. Mech. Work. Technol., 20, pp. 35–46.
da Silva,  M. B., and Wallbank,  J., 1999, “Cutting Temperature: Prediction and Measurement Methods—A Review,” J. Mater. Process. Technol., 88, pp. 195–202.
Herbert,  E. G., 1926, “The Measurement of Cutting Temperatures,” Proc. Inst. Mech. Eng., 1, pp. 289–329.
Schwerd,  F., 1933, “Über die Bestimmung des Temperaturfeldes Beim Spanablauf,” Z. VDI,9, p. 211.
Bastien,  T., and Weisz,  M., 1956, “Ein Studium des Einflusses eines Schwefelzusatzes auf die Bearbeitbarkeit eines Stahles von mittelmäßigem Kohlenstoffgehalt,” Microtechnic,6, p. 283.
Lenz,  E., 1964, “Die Temperaturverteilung an der Spanunterseite in der Kontaktzone Span-Werkzeug,” Werkstattstechnik,2, pp. 60–62.
Lenz,  E., 1966, “Die Temperaturmessung in der Kontaktzone Span-Werkzeug beim Drehvorgang,” CIRP Ann., XIII, pp. 201–220.
Lenz,  E., 1966, “Die Temperaturverteilung in der Kontaktzone Span-Werkzeug Beim Drehen von Stahl mit Hartmetallwerkzeugen,” CIRP Ann., XIV, pp. 137–144.
Chu,  T. H., and Wallbank,  J., 1998, “Determination of the Temperature of a Machined Surface,” ASME J. Manuf. Sci. Eng., 120, pp. 259–263.
DeWitt, D. P., and Nutter, G. D., eds., 1988, Theory and Practice of Radiation Thermometry, John Wiley & Sons Inc., New York.
Kottenstette,  J. P., 1986, “Measuring Tool-Chip Interface Temperatures,” ASME J. Eng. Ind., 108, pp. 101–104.
Ueda,  T., Sato,  M., and Sugita,  T., 1995, “Measurement of Tool-Workpiece Interface Temperature by Two-Color Pyrometer,” Journal—Japan Society for Precision Engineering,61(10), pp. 1448–1452.
Ueda,  T., Sato,  M., Sugita,  T., and Nakayama,  K., 1995, “Thermal Behavior of Cutting Grain in Grinding,” CIRP Ann., 44(1), pp. 325–328.
Ueda,  T., Sato,  M., and Nakayama,  K., 1998, “The Temperature of a Single Crystal Diamond Tool in Turning,” CIRP Ann., 47(1), pp. 41–44.
Müller-Hummel, P., and Lahres, M., 1993, “Infrared Temperature Measurement on Diamond-Coated Tools During Machining,” Proc. 4th European Conference on Diamond, Diamond-like and Related Coatings, Elsevier, Oxford, p. 765.
Müller-Hummel,  P., and Lahres,  M., 1996, “Temperaturmessung an diamantbeschichteten Werkzeugen während der Zerspanung,” IDR,1, pp. 8–12.
Hack, K., ed., 1996, The SGTE Casebook: Thermodynamics at Work, Institute of Materials, London.
Afran, A., 1994, “Analysis of the Thermal Runaway Properties of Germanium Using the Variable Temperature Cell,” application note, Specac Ltd.
Pyatt,  E. C., 1954, “Some Considerations of the Errors of Brightness and Two-Color Types of Spectral Radiation Pyrometer,” Br. J. Appl. Phys., 5, pp. 264–268.
Oikari,  R., Laurila,  T., and Hernberg,  R., 1997, “High-Temperature Effects in Fluorine-Doped, Fused Synthetic Silica Fibers,” Appl. Opt., 36(21), pp. 5058–5063.
Nutter, G. D., 1988, “Radiation Thermometers: Design Principles and Operating Characteristics,” Theory and Practice of Radiation Thermometry, DeWitt, D. P. and Nutter, G. D., eds., John Wiley & Sons Inc., New York.
Müller,  B., and Renz,  U., 2003, “Time Resolved Temperature Measurements in Manufacturing,” Measurement, 34(4), pp. 363–370.
Raman,  S., and Cohen,  P. H., 1993, “Remote Sensing for On-Line Temperature Estimation in Machining: A Basic Framework,” J. Mater. Process. Technol., 38, pp. 613–632.
Vieregge, G., 1970, Zerspanung der Eisenwerkstoffe, Verlag Stahleisen mbH, Düsseldorf.
Spaans, C., 1971, “The Fundamentals of Three-Dimensional Chip Curl, Chip Breaking and Chip Control,” Dissertation, TH Delft, NL.
Müller, B., and Renz, U., 2001, “Temperature Measurements With a Fibre-Optic Two-Color-Pyrometer,” Scientific Fundamentals of HSC, H. Schulz, ed., Carl Hanser Verlag, München—Wien, pp. 181–186.
Müller, B., and Renz, U., 2000, “Temperaturmessung mit Einem Zwei-Farben-Pyrometer,” Spanen metallischer Werkstoffe mit hohen Geschwindigkeiten, H. K. Tönshoff and F. Hollmann, eds., Verlag der Universität Hannover, pp. 217–224.
Müller, B., and Renz, U., 2002, “Thermographic Measurements of High Speed Metal Cutting,” Thermosense XXIV, X. P. Maldague and A. E. Rozlosnik, eds., Proceedings of SPIE, Vol. 4710, pp. 126–134.
Müller, B., 2004, “Thermische Analyse des Zerspanens metallischer Werkstoffe bei konventionellen und hohen Schnittgeschwindigkeiten,” Dissertation, RWTH Aachen, Germany.
Davies,  M. A., Cao,  Q., Cooke,  A. L., and Ivester,  R., 2003, “On the Measurement and Prediction of Temperature Fields in Machining AISI 1045 Steel,” CIRP Ann. 52(1), pp. 77–80.

Figures

Grahic Jump Location
Set-up of the pyrometer
Grahic Jump Location
Fiber position for the measurement of the chip temperature (side view, profile)
Grahic Jump Location
Fiber position for the measurement of the workpiece temperature below the major cutting edge (side view, profile)
Grahic Jump Location
Fiber position for the measurement of the workpiece temperature below the minor cutting edge (top view)
Grahic Jump Location
Temperatures of the chip surface as a function of cutting speed and feed (AISI 1045, depth of cut 1 mm, distance fiber to cutting edge 1.6 mm)
Grahic Jump Location
Temperatures of the chip surface as a function of cutting speed and distance between fiber and cutting edge (AISI 1045, feed 0.2 mm/rev, depth of cut 1 mm)
Grahic Jump Location
Temperatures of the workpiece surface below the major cutting edge as a function of cutting speed and distance between fiber and cutting edge (AISI 1045, feed 0.1 mm/rev, depth of cut 1 mm)
Grahic Jump Location
Temperatures of the chip surface as a function of cutting speed and distance between fiber and cutting edge (AA 7075, feed 0.25 mm/rev, depth of cut 2 mm)
Grahic Jump Location
Temperatures of the chip surface as a function of cutting speed and distance between fiber and cutting edge (Ti6Al4V, feed 0.1 mm/rev, depth of cut 1 mm)
Grahic Jump Location
Temperatures of the workpiece surface below the major and minor cutting edge as functions of cutting speed (Ti6Al4V, feed 0.1 mm/rev, depth of cut 1 mm, distance fiber to cutting edge 4.5 mm)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In