0
TECHNICAL PAPERS

Vibration Frequencies in High-Speed Milling Processes or a Positive Answer to Davies, Pratt, Dutterer and Burns

[+] Author and Article Information
T. Insperger

Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest, H-1521, Hungarye-mail: inspi@mm.bme.hu

G. Stépán

Head of Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest, H-1521, Hungarye-mail: stepan@mm.bme.hu

J. Manuf. Sci. Eng 126(3), 481-487 (Sep 07, 2004) (7 pages) doi:10.1115/1.1763184 History: Received January 01, 2003; Revised December 01, 2003; Online September 07, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Taylor,  F. W., 1907, “On the Art of Cutting Metals,” Trans. ASME, 28, pp. 31–350.
Tlusty, J., Polacek, A., Danek, C., and Spacek, J., 1962, Selbsterregte Schwingungen an Werkzeugmaschinen, VEB Verlag Technik, Berlin.
Tobias, S. A., 1965, Machine Tool Vibration, Blackie, London.
Kudinov, V. A., 1967, Dynamics of Tool-Lathe (in Russian), Mashinostroenie, Moscow.
Moon, F. C., 1998, Dynamics and Chaos in Manufacturing Processes, Wiley, New York.
Seagalman,  D. J., and Butcher,  E. A., 2000, “Suppression of Regenerative Chatter via Impendance Modulation,” Pramana, Suppl., 6, pp. 243–256.
Stépán,  G., 2001, “Modelling Nonlinear Regenerative Effects in Metal Cutting,” Philos. Trans. R. Soc. London, 359, pp. 739–757.
Gouskov,  A. M., Voronov,  S. A., Paris,  H., and Batzer,  S. A., 2002, “Nonlinear Dynamics of a Machining System With Two Interdependent Delays,” Commun. Nonlinear Sci. Numer. Simul.,7(4), pp. 207–221.
Stépán, G., 1989, Retarded Dynamical Systems, Longman, Harlow.
Stépán, G., 1998, Delay-differential Equation Models for Machine Tool Chatter, in Dynamics and Chaos in Manufacturing Processes, Moon, F. C., ed., Wiley, New York, pp. 165–192.
Shi,  H. M., and Tobias,  S. A., 1984, “Theory of Finite Amplitude Machine Tool Instability,” Int. J. Mach. Tool Des. Res., 24, pp. 45–69.
Stépán, G., and Kalmár-Nagy, T., 1997, “Nonlinear Regenerative Machine Tool Vibration,” Proceedings of the 1997 ASME Design Engineering Technical Conferences, Sacramento, California, paper no. DETC97/VIB-4021 (CD-ROM).
Stépán, G., Szalai, R., and Insperger, T., 2004, Nonlinear Dynamics of High-Speed Milling Subjected to Regenerative Effect, in Nonlinear Dynamics of Production Systems, Radons, G., ed., Wiley VCH, Weinheim, pp. 111–128.
Kalmár-Nagy, T., Pratt, J. R., Davies, M. A., and Kennedy, M., 1999, “Experimental and Analytical Investigation of the Subcritical Instability in Metal Cutting,” Proceedings of the ASME 1999 Design Engineering Technical Conferences, Sacramento, California, paper no. DETC99/VIB-8060, (CD-ROM).
Balachandran,  B., 2001, “Nonlinear Dynamics of Milling Process,” Philos. Trans. R. Soc. London, 359, pp. 793–820.
Metallidis,  P., and Natsiavas,  S., 2000, “Vibration of a Continuous System With Clearance and Motion Constraints,” Int. J. Non-Linear Mech., 35(4), pp. 675–690.
Batzer, S. A., Gouskov, A. M., and Voronov, S. A., 1999, “Modelling the Vibratory Drilling Process,” Proceedings of the 1999 ASME Design Engineering Technical Conferences, Las Vegas, Nevada, paper no. DETC99/VIB-8024, (CD-ROM).
Davies,  M. A., and Balachandran,  B., 2000, “Impact Dynamics in the Milling of Thin-Walled Structures,” Nonlinear Dyn., 22(4), pp. 375–392.
Davies,  M. A., Pratt,  J. R., Dutterer,  B., and Burns,  T. J., 2002, “Stability Prediction for Low Radial Immersion Milling,” ASME J. Manuf. Sci. Eng., 124(2), pp. 217–225.
Hale, J. K., and Lunel, S. M. V., 1993, Introduction to Functional Differential Equations, Springer-Verlag, New York.
Farkas, M., 1994, Periodic Motions, Springer-Verlag, New York.
Minis,  I., and Yanushevsky,  R., 1993, “A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling,” ASME J. Ind., 115, pp. 1–8.
Altintas,  Y., and Budak,  E., 1995, “Analytical Prediction of Stability Lobes in Milling,” CIRP Ann., 44(1), pp. 357–362.
Budak,  E., and Altintas,  Y., 1998, “Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation,” ASME J. Dyn. Syst., Meas., Control, 120, pp. 22–30.
Budak,  E., and Altintas,  Y., 1998, “Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems,” ASME J. Dyn. Syst., Meas., Control, 120, pp. 31–36.
Corpus, W. T., and Endres, W. J., 2000, “A High-Order Solution for the Added Stability Lobes in Intermittent Machining,” Proceedings of the Symposium on Machining Processes, Orlando, Florida, MED-11 , pp. 871–878.
Tian,  J., and Hutton,  S. G., 2001, “Chatter Instability in Milling Systems With Flexible Rotating Spindles—a New Theoretical Approach,” ASME J. Manuf. Sci. Eng., 123(1), pp. 1–9.
Insperger,  T., and Stépán,  G., 2000, “Stability of the Milling Process,” Period. Polytech., Mech. Eng.-Masinostr., 44(1), pp. 47–57.
Insperger,  T., and Stépán,  G., 2002, “Semi-Discretization Method for Delayed Systems,” Int. J. Numer. Methods Eng., 55(5), pp. 503–518.
Bayly, P. V., Halley, J. E., Mann, B. P., and Davies, M. A., 2001, “Stability of Interrupted Cutting by Temporal Finite Element Analysis,” Proceedings of the ASME 2001 Design Engineering Technical Conferences, Pittsburgh, Pennsylvania, paper no. DETC2001/VIB-21581 (CD-ROM).
Smith,  S., and Tlusty,  J., 1991, “An Overview of Modeling and Simulation of the Milling Process,” ASME J. Ind., 113, pp. 169–175.
Gradišek,  J., Govekar,  E., and Grabec,  I., 1998, “Time Series Analysis in Metal Cutting: Chatter Versus Chatter-Free Cutting,” Mech. Syst. Signal Process., 12(6), pp. 839–854.
Schmitz,  T. L., Davies,  M. A., Medicus,  K., and Snyder,  J., 2001, “Improving High-Speed Machining Material Removal Rates by Rapid Dynamic Analysis,” CIRP Ann., 50(1), pp. 263–268.
Gradišek,  J., Friedrich,  R., Govekar,  E., and Grabec,  I., 2002, “Analysis of Data From Periodically Forced Stochastic Processes,” Phys. Lett. A, 294(3–4), pp. 234–238.
Insperger,  T., Mann,  B. P., Stépán,  G., and Bayly,  P. V., 2003, “Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods,” Int. J. Mach. Tools Manuf., 43(1), pp. 25–34.
Zhao,  M. X., and Balachandran,  B., 2001, “Dynamics and Stability of Milling Process,” Int. J. Solids Struct., 38(10–13), pp. 2233–2248.
Insperger,  T., Stépán,  G., Bayly,  P. V., and Mann,  B. P., 2003, “Multiple Chatter Frequencies in Milling Processes,” J. Sound Vib., 626(2), pp. 333–345.
Mann,  B. P., Insperger,  T., Bayly,  P. V., and Stépán,  G., 2002, “Stability of Up-Milling and Down-Milling, Part 2: Experimental Verification,” Int. J. Mach. Tools Manuf., 43(1), pp. 35–40.
Laczik, B., 1986, “Vibration Monitoring of Cutting Processes,” (in Hungarian), PhD Thesis, Technical University of Budapest, Hungary.
Kondo,  E., Ota,  H., and Kawai,  T., 1992, “Regenerative Chatter Vibrations of Turning Workpiece,” Trans. Jpn. Soc. Mech. Eng., Ser. A, 58, pp. 1251–1265.
Halley, J. E., Helvey, A. M., Smith, K. S., and Winfough, W. R., 1999, “The Impact of High-Speed Machining on the Design and Fabrication of Aircraft Components,” Proceedings of 1999 ASME Design and Technical Conferences, Las Vegas, Nevada, paper no. DETC99/VIB-8057 (CD-ROM).

Figures

Grahic Jump Location
Mechanical model of milling processes
Grahic Jump Location
Geometry of milling processes
Grahic Jump Location
Stability charts and chatter frequencies for various machining processes
Grahic Jump Location
Position of the relevant characteristic multipliers for different cutting parameters
Grahic Jump Location
Power spectra for points A, B, C, D, E and F in Fig. 4

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In