0
TECHNICAL BRIEFS

Characteristics of Heat Transfer During Machining With Rotary Tools

[+] Author and Article Information
H. A. Kishawy, A. G. Gerber

Mechanical Engineering Department, University of New Brunswick, Fredericton, NB E3B 5A3 Canada

J. Manuf. Sci. Eng 126(2), 404-407 (Jul 08, 2004) (4 pages) doi:10.1115/1.1643080 History: Received August 01, 2003; Online July 08, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kops,  L., and Arenson,  M., 1999, “Determination of Convective Cooling Conditions in Turning,” CIRP Ann., 48, pp. 47–52.
Boothroyed,  G., 1963, “Temperatures in Orthogonal Metal Cutting,” Proc. Inst. Mech. Eng., 177, pp. 789–810.
Tay,  A. O., Stevenson,  M. G., Davis,  G., and Oxley,  P. L., 1976, “A Numerical Method for Calculating Temperature Distributions in Machining from Force and Shear Angle Measurements,” Int. J. Mach. Tool Des. Res., 16, pp. 335–349.
Ng,  E. G., Aspinwall,  D. K., Brazil,  D., and Monaghan,  J., 1999, “Modelling of Temperature and Forces When Orthogonally Machining Hardened Steel,” Int. J. Mach. Tools Manuf., 39, pp. 885–903.
Kottenstette,  J. P., 1986, “Measuring Tool/Chip Interface Temperatures,” ASME J. Eng. Ind., 108, pp. 101–104.
Ostafiev,  V., Kharkevich,  A., Weinert,  K., and Ostafiev,  S., 1999, “Tool Heat Transfer in Orthogonal Metal Cutting,” ASME J. Manuf. Sci. Eng., 121, pp. 541–549.
Kato,  S., Yamaguchi,  K., Watanabe,  Y., and Hiraiwa,  Y., 1976, “Measurements of Temperature Distribution Within Tool Using Powders of Constant Melting Point,” ASME J. Eng. Ind., 98, pp. 607–613.
Yen,  D. W., and Wright,  P. K., 1986, “A Remote Temperature Sensing Technique for Estimating The Cutting Interface Temperature Distribution,” ASME J. Eng. Ind., 108, pp. 252–263.
Wright,  P. K., McCormick,  S. P., and Miller,  T. K., 1980, “Effect of Rake Face Design on Cutting Tool Temperature Distributions,” ASME J. Ind., 102, pp. 123–128.
Stephenson,  D. A., 1991, “Assessment of Steady-State Metal Cutting Temperature Models Based on Simultaneous Infrared and Thermocouple Data,” ASME J. Eng. Ind., 113, pp. 121–128.
Venuvinod,  P. K., and Lau,  W. S., 1986, “Estimation of Rake Temperatures in Free Oblique Cutting,” Int. J. Mach. Tool Des. Res., 26, pp. 1–4.
Chao,  B. T., and Trigger,  K. J., 1958, “Temperature Distribution at Tool-Chip and Tool-Work Interface In Metal Cutting,” Trans. ASME, 80, pp. 311–320.
Shaw,  M. C., Smith,  P. A., and Cook,  N. A., 1952, “The Rotary Cutting Tool,” Trans. ASME, 74, pp. 1065–1076.
Armarego,  E. J. A., Karri,  V., and Smith,  A. J. R., 1994, “Fundamental Studies of Driven and Self-Propelled Rotary Tool Cutting Processes-I. Theoretical Investigation,” Int. J. Mach. Tools Manuf., 34(6), pp. 785–801.
Venuvinod,  P. K., Lau,  W. S., and Reddy,  P. N., 1981, “Some Investigation in Machining With Driven Rotary Tools,” ASME J. Eng. Ind., 103, pp. 469–477.
Thomas, R. M., and Lawson, R. L., 1967, “Applications of Rotary Turning Tool,” 17th International MATADOR Conf., Sep. 20–24, pp. 125–131.
Chen,  P., 1992, “High-Performance Machining of SiC Whisker-Reinforced Aluminum Composite by Self-Propeeled Rotary Tools,” CIRP Ann., 41, pp. 59–62.
Kishawy, H. A., Shawky, A. M., and Elbestawi, M. A., 2001, “Assessment of Self-Propelled Rotating Tools During High Speed Milling,” SME, Proceeding of the 4th International Machining & Grinding Conference, May 7–10, Troy, Michigan, pp. 1–11.
Kishawy, H. A., and Wilcox, J., 2002, “Tool Wear and Chip Formation During Hard Turning with Self-Propelled Rotary Tools,” To appear in the Int. J. Mach. Tools Manuf.
Kishawy, H. A., and Gerber, A. G., 2001, “A Model for the Tool Temperature During Machining With a Rotary Tool,” International Mechanical Engineering Congress and Exposition Symposium on Fundamental Issues in Machining, Volume 3, ECE2001/MED-23312, pp. 1–10.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, McGraw-Hill.

Figures

Grahic Jump Location
A simplified model for the tool, the chip, and the chip-tool interface
Grahic Jump Location
Measured and predicted temperatures at different velocity ratio
Grahic Jump Location
Typical Temperature Distribution in a 3-D rotary tool with applied velocity field shown (Tmax=430 C,Tmin=30 C,contour intervals of ΔT=25 C)
Grahic Jump Location
Effect of tool speed on the temperature distribution on the rake face

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In