0
TECHNICAL PAPERS

Control-Oriented Modeling of Thermal Deformation of Machine Tools Based on Inverse Solution of Time-Variant Thermal Loads with Delayed Response

[+] Author and Article Information
S. Fraser

Senior Control Systems Engineer, LHP Software LLC, Columbus, Indiana

M. H. Attia

Aerospace Manufacturing Technology Center, Institute for Aerospace Research, National Research Council of Canada/McGill University, Montreal, Quebec, Canada

M. O. M. Osman

Mechanical Engineering Department, Concordia University, Montreal, Quebec, Canada

J. Manuf. Sci. Eng 126(2), 286-296 (Jul 08, 2004) (11 pages) doi:10.1115/1.1751188 History: Received March 01, 2003; Revised October 01, 2003; Online July 08, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ferreira,  P. M., and Liu,  C. R., 1993, “A Method for Estimating and Compensating Quasi-static Errors of Machine Tools,” ASME J. Ind., 115, pp. 149–159.
Hatamura,  Y., Nagao,  T., Mitsuishi,  M., Kato,  K., Taguchi,  S., Okumura,  T., Nakagawa,  G., and Sugishita,  H., 1993, “Development of an Intelligent Machining Center Incorporating Active Compensation for Thermal Distortion,” CIRP Ann., 42(1), pp. 549–552.
Ni,  J., and Wu,  S. M., 1993, “An On-line Measurement Technique for Machine Volumetric Error Compensation,” ASME J. Ind., 115, pp. 85–92.
Ichimiya, R., Yokoyama, K., and Watanabe, Y., 1976, “Experimental Study on Thermal Deformation of Machine Tool,” Fac. Engrg., Niigata Univ., Report No. 25.
Ichimiya, R., 1980, “Compensation for Thermal Deformation of Milling Machine,” Proc. Conf. Numerical Methods in Machine Tool Design, Wroclaw, Poland, pp. 39–49.
Spur, G., and Heisel, U., 1977, “Automatic Compensation of Thermal Disturbances in Machine Tools,” Proceeding of the 3rd International Conference on Production Engineering, Kyoto.
Weck, M., Schuze, O., Michels, F., and Bonse, R., 1994, “Optimization of Machine Tools Performance and Accuracy,” ASME Symposium on Intelligent Machine Tool Systems, Int Mech Engrg Congress and Exposition, pp. 895–908.
Chen,  J. S., Yuan,  J. X., Ni,  J., and Wu,  S. M., 1993, “Real-time Compensation for Time-Variant Volumetric Errors on a Machining Center,” ASME J. Ind., 115, pp. 472–479.
Schellekens, P., Soons, J., Spann, H., Look, V., Trapet, E., Dooms, J., De Ruiter, H., and Maisch, M., 1993, “Development of Methods for the Numerical Correlation of Machine Tools,” Report to the Commission of the European Communities, EUR 15377 EN 1-191.
Mou,  J., and Liu,  C. R., 1995, “An Adaptive Methodology for Machine Tool Error Correction,” ASME J. Ind., 117, pp. 389–399.
Mou,  J., Donmez,  M. A., and Cetinkunt,  S., 1995, “An Adaptive Error Correction Method Using Feature-Based Analysis Techniques for Machine Performance Improvement,” ASME J. Ind., 117, pp. 584–590, and pp. 591–600.
Moriwaki, T., and Zhao, C., 1992, “Neural Network Approach to Identify Thermal Deformation of Machining Center” Human Aspects in Computer Integrated Manufacturing, G. J. Olling and F. Kimura, eds., Elsevier Science Publishers B. V., pp. 685–697.
Sata, T., Takeuchi, Y., and Okubo, N., 1975, “Control of the Thermal Deformation of a Machine Tool,” Proc., 16th Int. MTDR Conference, McMillan Press, pp. 203–208.
Sata,  T., Takeuchi,  Y., Sakamoto,  M., and Weck,  M., 1981, “Improvement of Working Accuracy on NC Lathe by Compensation for the Thermal Expansion of Tool,” CIRP Ann., 30(1), pp. 445–449.
Moriwaki,  T., 1988, “Thermal Deformation and Its On-Line Compensation of Hydraulically Supported Precision Spindle,” CIRP Ann., 37(1), pp. 393–396.
Spur, G., and Fischer, H., 1969, “Thermal Behaviour of Machine Tools,” Proc. 10th Int. MTDR Conference, Macmillan Press, pp. 147–160.
Jedrzejewski, J., 1988, “Directions for Improving the Thermal Stability of Machine Tools,” Symposium on Thermal Aspects in Manufacturing, M. H. Attia and I. Kops, eds., ASME, Chicago, III., pp. 165–182.
Fraser,  S., Attia,  M. H., and Osman,  M. O. M., 1998, “Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures: Part I-Concept of Generalized Modelling,” ASME J. Manuf. Sci. Eng., 120, pp. 623–631.
Fraser,  S., Attia,  M. H., and Osman,  M. O. M., 1998, “Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures: Part II-Generalized Transfer Functions,” ASME J. Manuf. Sci. Eng., 120, pp. 632–639.
Fraser,  S., Attia,  M. H., and Osman,  M. O. M., 1999, “Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures: Part III-Real Time Identification of Heat Input to the Structure,” ASME J. Manuf. Sci. Eng., 121, pp. 501–508.
Fraser,  S., Attia,  M. H., and Osman,  M. O. M., 1999, “Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures: Part IV-A Multi-Variable Closed-Loop Control System,” ASME J. Manuf. Sci. Eng., 121, pp. 509–516.
Fraser,  S., Attia,  M. H., and Osman,  M. O. M., 1999, “Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures: Part V-A Multi-Variable Closed-Loop Control System,” ASME J. Manuf. Sci. Eng., 121, pp. 517–523.
Attia,  M. H., and Fraser,  S., 1999, “A Generalized Modelling Methodology for Optimized Real-Time Compensation of Thermal Deformation of Machine Tool and CMM Structures,” Int. J. Mach. Tools Manuf., 39, pp. 1001–1016.
Aronson,  R., 1994, “Machine Tool 101: Part 7, Machine Tools of the Future,” Manufacturing Engineering, pp. 39–45.
Beck, J. V., Blackwell, B., and St. Clair, C. R., 1985, Inverse Heat Conduction: III-posed Problems, Wiley-Interscience Publication, New York.
Hensel,  E., 1988, “Inverse Problems for Multi-dimensional Parabolic Partial Differential Equations,” Appl. Mech. Rev., 41, pp. 263–269.
Beck, J. V., 1968, “Surface Heat Flux Determinations Using an Integral Method,” Nucl. Eng. Design, pp. 170–187.
Murio, D. A., 1993, The Mollification Method and Numerical Solution of III-Posed Problems, Wiley, N.Y.
Alifanov, O. M., Artyukhin, E. A., and Rumyantsev, S. V., 1995, Extreme Methods for Solving III-Posed Problems with Applications to Inverse Heat Transfer, Begell House, New York.
Imber,  M., 1974, “Temperature Extrapolation Mechanism for Two-dimensional Heat Flow,” AIAA J., 12, pp. 1089–1093.
Dumek, V., Druckmueller, M., Raudensky, M., and Woodbury, K. A., 1993, “Novel Approach to IHCP: Neural Networks and Expert Systems,” Proc. ASME Conf on Inverse Problems in Engineering: Theory and Practice, N. Zabaras, K. A. Woodbury, and M. Raynaud, eds., pp. 275–282.
Alifanov, O. M., and Nenarokomov, A. V., 1993, “Boundary IHCP in Extreme Formulation,” Proc. ASME Conf on Inverse Problems in Engineering: Theory and Practice, N. Zabaras, K. A. Woodbury, and M. Raynaud, eds., pp. 31–37.
Murio, D. A., 1993, “On the Numerical Solution of the Two-dimensional IHCP by Discrete Mollification,” Proc. ASME Conf on Inverse Problems in Engineering: Theory and Practice, N. Zabaras, K. A. Woodbury, and M. Raynaud, eds., pp. 17–21.
Haji-Sheikh,  A., and Buckingham,  F. P., 1993, “Multidimensional Inverse Heat Conduction Using the Monte Carlo Method,” ASME J. Heat Transfer, 115, pp. 26–33.
Crump,  K. S., 1976, “Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation,” J. Assoc. Comput. Mach., 23, pp. 89–96.

Figures

Grahic Jump Location
Framework of control-based models for compensation of thermal deformation of machine tool structures
Grahic Jump Location
Behavior of the real unmodified and modified integrands for I=200 (Eq. 6)
Grahic Jump Location
Calibrated generalized step response with and without regularization
Grahic Jump Location
FE model of the physical model used for experimental verification of the models
Grahic Jump Location
Measured temperature difference with calibrated generalized step response and temperature measurement noise
Grahic Jump Location
Generalized and regularized step response of the structure
Grahic Jump Location
Magnitude of the Inverse Transfer Function G(r,s)
Grahic Jump Location
Measured, and estimated temperature difference for triangular heat input (calibrated at Q=1.0)
Grahic Jump Location
Estimated Q(t) for triangular heat input (calibrated at Q=1.0)
Grahic Jump Location
Time variation of the relative thermal displacements for triangular heat input: (a) measured and estimated values, (b) residual errors in the y-direction

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In