Shaw,
M. S., 1993, “Some Observations Concerning the Mechanics of Cutting and Grinding,” Appl. Mech. Rev., 46, pp. 74–79.

Komanduri,
R., 1993, “Machining and Grinding: A Historical Review of the Classical Papers,” Appl. Mech. Rev., 46, pp. 80–132.

Merchant,
M. E., 1945, “Mechanics of Metal Cutting Process,” J. Appl. Phys., 16, pp. 267–318.

Lee,
E. H., and Shaffer,
B. W., 1951, “The Theory of Plasticity Applied to a Problem of Machining,” ASME J. Appl. Mech., 18, pp. 405–413.

Usui, E., and Shirakashi, T., 1982, “Mechanics of Metal Machining-From ‘Descriptive’ to ‘Predictive’ Theory,” On the Art of Cutting Metals: A Tribute to F. W. Taylor, ASME PED 7, Kops, L., and Ramalingam, S., eds.

Strenkowski,
J. S., and Moon,
K-J., 1990, “Finite Element Prediction of Chip Geometry and Tool/Workpiece Temperature Distributions in Orthogonal Metal Cutting,” ASME J. Eng. Ind., 112, pp. 313–318.

Lin,
Z. C., and Lin,
S. Y., 1992, “A Coupled Finite Element Model of Thermo-elastic Large Deformation for Orthogonal Cutting,” ASME J. Eng. Mater. Technol., 114, pp. 218–226.

Xie,
J. Q., Bayoumi,
A. E., and Zbib,
H. M., 1994, “A Study on Shear Banding in Chip Formation of Orthogonal Machining,” Int. J. Mach. Tools Manuf., 36, pp. 835–847.

Marusich,
T. D., and Ortiz,
M., 1995, “Modeling and Simulation of High Speed Machining,” Int. J. Numer. Methods Eng., 38, pp. 3675–3694.

Shet,
C., and Deng,
X., 2000, “Finite Element Analysis of the Orthogonal Metal Cutting Process,” J. Mater. Process. Technol., 105, pp. 95–110.

Shi,
G. Q., Deng,
X. M., and Shet,
C., 2002, “A Finite Element Study of the Effect of Friction in Orthogonal Metal Cutting,” Finite Elem. Anal. Design, 38, pp. 863–883.

Lei,
S., Shin,
Y. C., and Incropera,
F. P., 1999, “Thermo-mechanical Modeling of Orthogonal Machining Process by Finite Element Analysis,” Int. J. Mach. Tools Manuf., 39, pp. 731–770.

Shih,
A. J., and Yang,
H. T. Y., 1993, “Experimental and Finite Element Predictions on the Residual Stresses due to Orthogonal Metal Cutting,” Int. J. Numer. Methods Eng., 36, pp. 1487–1507.

Shih,
A. J., 1995, “Finite Element Simulation of Orthogonal Metal Cutting,” ASME J. Eng. Ind., 117, pp. 84–93.

Shirakashi,
T., and Obikawa,
T., 1998, “Recent Progress and Some Difficulties in Computational Modeling of Machining,” Mach. Sci. Technol., 2, pp. 277–301.

Obikawa,
T., and Usui,
E., 1996, “Computational Machining of Titanium Alloy—Finite Element Modeling and a Few Results,” ASME J. Manuf. Sci. Eng., 118, pp. 208–215.

Obikawa,
T., Sasahara,
H., Shirasaki,
T., and Usui,
E., 1997, “Application of Computational Machining Method to Discontinuous Chip Formation,” ASME J. Manuf. Sci. Eng., , 119, pp. 667–674.

El Hossainy,
T. M., El-Shazly,
M. H., and Abd-Rabou,
M., 2001, “Finite Element Simulation of Metal Cutting Considering Chip Behavior and Temperature Distribution,” Mater. Manuf. Processes, 16, pp. 803–814.

Warnecke,
G., and Oh,
J. D., 2002, “A New Thermo-viscoplastic Material Model for Finite Element Analysis of the Chip Formation Process,” CIRP Ann., 51, pp. 79–82.

Mamalis,
A. G., Horvath,
M., Branis,
A. S., and Manolakos,
D. E., 2001, “Finite Element Simulation of Chip Formation in Orthogonal Metal Cutting,” J. Mater. Process. Technol., 110, pp. 19–27.

Yen,
Y. C., Sohner,
J., Weule,
H., Schmidt,
J., and Altan,
T., 2002, “Estimation of Tool Wear of Carbide Tool in Orthogonal Cutting Using FEM simulation,” Mach. Sci. Technol., 6, pp. 467–486.

Li,
K., Gao,
X. L., and Sutherland,
J. W., 2002, “Finite Element Simulation of the Orthogonal Metal Cutting Process for Qualitative Understanding of the Effects of Crater Wear on the Chip Formation Process,” J. Mater. Process. Technol., 127, pp. 309–324.

Boothroyd,
G., 1961, “Photographic Technique for the Determination of Metal Cutting Temperatures,” Br. J. Appl. Phys., 12, pp. 238–242.

Chao,
B. T., Li,
H. L., and Trigger,
K. J., 1961, “An Experimental Investigation of Temperature Distribution at Tool-flank Surface,” Trans. ASME, 83, pp. 496–504.

Prins,
O. D., 1971, “The Influence of Wear on the Temperature Distribution at the Rake Face,” CIRP Ann., XVIV, pp. 579–584.

Lezanski,
P., and Shaw,
M. C., 1990, “Tool Face Temperatures in High Speed Milling,” Trans. ASME, 112, pp. 132–135.

Ay,
H., Yang,
W.-J., and Yang,
J. A., 1994, “Dynamics of Cutting Tool Temperatures During Cutting Process,” Exp. Heat Transfer, 7, pp. 203–216.

Stephenson,
D. A., 1991, “Assessment of Steady-state Metal Cutting Temperature Models Based on Simultaneous Infrared and Thermocouple Data,” ASME J. Eng. Ind., 113, pp. 121–128.

Müller-Hummel,
P., Lahres,
M., Mehlhose,
J., and Lang,
G., 1997, “Measurement of Temperature in Diamond Coated Tools During Machining Processes,” Diamond Films Technol., 7, pp. 219–239.

M’Saoubi,
R., Le Calvez,
C., Changeux,
B., and Lebrun,
J. L., 2002, “Thermal and Microstructural Analysis of Orthogonal Cutting of a Low Alloyed Carbon Steel Using an Infrared-charge-coupled Device Camera Technique,” Proc. Inst. Mech. Eng., 216, pp. 153–165.

Davies, M. A., Yoon, H., Schmitz, T. L., and Kennedy, M. S., 2003, “Calibrated Thermal Microscopy of the Tool Chip Interface in Machining,” Mach. Sci. Technol., 7 , in press.

Davies, M. A., Cao, Q., Cooke, A. L., and Ivester, R., 2003, “On the Measurement and Prediction of Temperature Fields in Machining AISI 1045 Steel,” CIRP Ann., 52 .

Bitans,
K., and Brown,
R. H., 1965, “An Investigation of the Deformation in Orthogonal Cutting,” Int. J. Mach. Tool Des. Res., 5, pp. 155–165.

Zorev, N. N., 1966, *Metal Cutting Mechanics*, Shaw, M. C., ed., Pergamon Press.

Palmer,
W. B., and Oxley,
P. L. B., 1959, “Mechanics of Orthogonal Machining,” Proc. Inst. Mech. Eng., 173, pp. 623–654.

Komanduri,
R., and Brown,
R. H., 1981, “On the Mechanics of Chip Segmentation in Machining,” ASME J. Eng. Ind., 103, pp. 33–51.

Potdar, Y. K., 2001, “Measurements and Simulations of Temperature and Deformation Fields in Transient Orthogonal Metal Cutting,” PhD. Thesis, Cornell University.

Zehnder,
A. T., and Rosakis,
A. J., 1991, “On the Temperature Distribution in the Vicinity of Dynamically Propagating Cracks in 4340 Steel,” J. Mech. Phys. Solids, 39, pp. 385–415.

Zehnder, A. T., and Rosakis, A. J., 1993, “Temperature Rise at the Tip of Dynamically Propagating Cracks: Measurements Using High Speed Infrared Detectors,” *Experimental Techniques in Fracture, III*, J. Epstein, ed., VCH Publishers, pp. 125–170.

Kallivayalil,
J. A., and Zehnder,
A. T., 1994, “Measurement of the Temperature Field Induced by Dynamic Crack Growth in Beta-C Titanium,” Int. J. Fract., 66, pp. 99–120.

Guduru,
P., Zehnder,
A. T., Rosakis,
A. J., and Ravichandran,
G., 2002, “Dynamic, Full-field Measurements of Crack Tip Temperatures,” Eng. Fract. Mech., 68, pp. 1535–1556.

Zehnder, A. T., Potdar, Y. K., and Bhalla, K., 2002, “Plasticity Induced Heating in the Fracture and Cutting of Metals,” *Thermo Mechanical Fatigue and Fracture*, M. H. Aliabadi, ed., WIT Press, pp. 209–244.

*ABAQUS Users Manual, Version 5.8*, 1999, Kibbit, Karlsson and Sorenson, Inc., Providence, RI.

Shawki,
T. G., and Clifton,
R. J., 1989, “Shear Band Formation in Thermal Viscoplastic Materials,” Mech. Mater., 8, pp. 13–43.

Yadav,
S., Chichili,
D. R., and Ramesh,
K. T., 1995, “The Mechanical Response of A 6061-T6 Al/Al_{2}O_{3} Metal Matrix Composite at High Rates of Deformation,” Acta Metall. Mater., 43, pp. 4453–4464.

Da Silva,
M. G., and Ramesh,
K. T., 1997, “The Rate Dependent Deformation and Localization of Fully Dense and Porous Ti-6Al-4V,” Mater. Sci. Eng., A, A232, pp. 11–22.

Ramesh, K. T., 2001, Personal communication.

*Metals Handbook*, 1998, ASM International, Materials Park, Ohio.

*Military Handbook, MIL-HDBK-5G*, 1, 1994.

Carboloy TEC Team, 2001, Personal communication.

*Thermophysical Properties of Matter, The TPRC Data Series*, 1970, IFI/Plenum.

Kirth-Othmer, ed., 1978, *Encyclopedia of Chemical Technology*, Third Ed., Vol. 4, John Wiley and Sons,

Moufki,
A., Molinari,
A., and Dudzinski,
D., 1998, “Modeling of Orthogonal Cutting With a Temperature Dependent Friction Law,” J. Mech. Phys. Solids, 46, pp. 2103–2138.

Zehnder,
A. T., Guduru,
P. R., Rosakis,
A. J., and Ravichandran,
G., 2000, “Million Frames per Second Infrared Imaging System,” Rev. Sci. Instrum., 71, pp. 3762–3768.