0
TECHNICAL PAPERS

Inverse Heat Transfer Analysis of Grinding, Part 2: Applications

[+] Author and Article Information
C. Guo, S. Malkin

Department of Mechanical Engineering, University of Massachusetts, Amherst, MA 01003

J. Eng. Ind 118(1), 143-149 (Feb 01, 1996) (7 pages) doi:10.1115/1.2803635 History: Received October 01, 1993; Revised January 01, 1995; Online January 17, 2008

Abstract

Distributions of the heat flux to the workpiece and the convection heat transfer coefficient on the workpiece surface during straight surface grinding are estimated from measured temperatures in the workpiece subsurface using inverse heat transfer methods developed in Part 1. The results indicate that the heat flux to the workpiece is distributed approximately linearly (triangular heat source) along the grinding zone with about 70 to 75 percent of the total energy transported as heat to the workpiece for grinding of steels with a conventional aluminum oxide wheel and only about 20 percent with CBN superabrasive wheels. The wheel-workpiece contact length corresponding to the region of positive heat flux to the workpiece is found to be generally close to but slightly longer than the theoretical geometric contact length. The convection heat transfer coefficient for cooling by the applied grinding fluid is greatest just behind the trailing edge of the grinding zone where fluid is directly applied, and negligible ahead of the grinding zone.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In