0
TECHNICAL PAPERS

An Error Compensation Strategy for Replication by Rapid Prototyping

[+] Author and Article Information
M. L. Philpott, P. A. Green

Mechanical and Industrial Engineering Department, University of Illinois at Urbana-Champaign, USA

J. Eng. Ind 117(3), 423-429 (Aug 01, 1995) (7 pages) doi:10.1115/1.2804350 History: Received December 01, 1993; Revised November 01, 1994; Online January 17, 2008

Abstract

A generic closed-loop strategy for error compensation is presented which extracts and mathematically models the geometry of sculptured artifacts, and compensates for cumulative error build-up during replication. Experimental results using this strategy demonstrate that a considerable improvement in the accuracy of the end product can be achieved. The replication process involves scanning, CAD solid model creation, rapid prototyping utilizing the stereolithography process, the production of room temperature vulcanized (RTV ) molds, the casting of polyurethane parts from the RTV mold, abrasive finishing processes associated with these prototyping processes, and the CNC machining of production molds and dies. At each stage in the replication process, the surface errors (caused primarily by material shrinkage, layer curling, internal stresses, chemical curing phenomena, and material removal during mechanical surface finishing) are tracked and used in subsequent production, through an iterative process of surface fitting and surface compensation.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In