Off-Axial, Gas-Jet-Assisted, Laser Cutting of 6.35-mm Thick Stainless Steel

[+] Author and Article Information
M. J. Hsu, P. A. Molian

Mechanical Engineering Department, Iowa State University, Ames, IA 50011

J. Eng. Ind 117(2), 272-276 (May 01, 1995) (5 pages) doi:10.1115/1.2803314 History: Received September 01, 1991; Revised November 01, 1993; Online January 17, 2008


A dual gas-jet, laser-cutting technique involving coaxial and off-axial oxygen gas flows was developed to cut 6.35-mm thick AISI 304 stainless steel plates with a 1.2-kW CO2 gas transport laser at a cutting speed of 12.7 mm/sec (30 in./min). Under identical process conditions, the single, coaxial gas jet could not cut the stainless steel although the cutting speed was reduced to 2.11 mm/sec (5 in./min). Thresholds of off-axial nozzle diameter, gas-impinging angle, oxygen pressure, and other process parameters were determined to obtain clean-cut edge quality (average dross height 0.25 mm). Experimental data coupled with a fluid-dynamics model of gas flow were presented to show the effectiveness of the dual gas-jet, laser-cutting method in achieving the maximum machining rate without deteriorating the quality of cut.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In