0
RESEARCH PAPERS

Modal Analysis of a Suspension Assembly

[+] Author and Article Information
C. J. Wilson, D. B. Bogy

Computer Mechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720

J. Eng. Ind 116(3), 377-386 (Aug 01, 1994) (10 pages) doi:10.1115/1.2901955 History: Received January 01, 1993; Revised June 01, 1993; Online April 08, 2008

Abstract

The dynamic characteristics of a suspension assembly are examined using new numerical and experimental techniques. The p-type finite element method is used to construct a numerical model of the suspension. There are significant advantages in using this approach to analyze these types of structures. The model is verified by an experimental modal analysis system, which has been shown to be effective in the study of small structures. The modelled modal parameters agree within 4.5 percent with the experimental results for 14 modes. Since the experimental system uses an electromagnetic exciter, a ferromagnetic target must be attached to the nonferrous suspension so that it can be excited. Innovative techniques are investigated to improve the attachment of this ferromagnetic target. Furthermore, the finite element model is utilized to evaluate the sensitivity of the modal parameters of the suspension to changes in its geometrical features.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In