Modelling and Analysis of Pulse Electrochemical Machining (PECM)

[+] Author and Article Information
J. Kozak, K. P. Rajurkar, B. Wei

Industrial and Management System Engineering Department, University of Nebraska-Lincoln, Lincoln, NE 68588-0518

J. Eng. Ind 116(3), 316-323 (Aug 01, 1994) (8 pages) doi:10.1115/1.2901947 History: Received January 01, 1991; Revised July 01, 1993; Online April 08, 2008


A small interelectrode gap in Electrochemical Machining (ECM) results in improved dimensional accuracy control and simplified tool design. However, using a small gap with conventional ECM equipment adversely affects the electrolyte flow or mass transport conditions in the gap, leading to process instability. The most remarkable breakthrough in this regard is the development of ECM using pulsed current. Pulse Electrochemical Machining (PECM) involves the application of a voltage pulse at high current density in the anodic dissolution process. PECM allows for more precise monitoring and control of machining parameters than ECM using continuous current. Small interelectrode gap, low electrolyte flow rate, gap state recovery during the pulse-off times and improved anodic dissolution efficiency features encountered in PECM lead to improved workpiece precision and surface finish when compared with ECM using continuous current. This paper presents mathematical models for the PECM process which take into consideration the nonsteady physical phenomena in the gap between the electrodes, including the conjugate fields of electrolyte flow velocities, pressure, temperature, gas concentrations, current densities and anodic material removal rates. The principles underlying higher dimensional accuracy and simpler tool design attainable with optimum pulse parameters are also discussed. Experimental studies indicate the validity of the proposed PECM models.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In