Metal Embedded Fiber Bragg Grating Sensors in Layered Manufacturing

[+] Author and Article Information
Xiaochun Li

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706e-mail: xcli@engr.wisc.edu

Fritz Prinz

Departments of Mechanical Engineering and Materials Science and Engineering, Stanford University, California 94305-3030e-mail: fbp@cdr.stanford.edu

J. Manuf. Sci. Eng 125(3), 577-585 (Jul 23, 2003) (9 pages) doi:10.1115/1.1581889 History: Received April 01, 2002; Revised November 01, 2002; Online July 23, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Prinz, F. B., chair, 1997, “Process Overviews,” Rapid Prototyping in Europe and Japan, Vol. I, Analytical Chapters, International Technology Research Institute, Loyola College in Maryland, March.
Au, S., and Wright, P. K., 1993, “A Comparative Study of Rapid Prototyping Technology,” Intelligent Concurrent Design: Fundamentals, Methodology, Modeling, and Practice, DE-vol. 66, ASME, New Orleans, Louisiana, November/December, pp. 73–82.
Barkan, P., and Iasiti, M., 1993, “Prototyping: A Tool for Rapid Learning in Product Development,” Concurrent Engineering: Research and Applications 1, pp. 125–134.
Ashley,  S., 1995, “Rapid Prototyping is Coming of Age,” Mech. Eng. (Am. Soc. Mech. Eng.), 117(7), July, p. 66.
Marcus, H. L., Harrison, S., and Crocker, J., 1996, “Solid Freeform Fabrication: An Overview,” American Society of Mechanical Engineers, Manufacturing Engineering Division, MED, v.4, 1996, pp. 3–9.
Conley,  J. G., and Marcus,  H. L., 1997, “Rapid Prototyping and Solid Freeform Fabrication,” ASME J. Manuf. Sci. Eng., 119(4B), November, pp. 811–816.
Ashley,  S., 1997, “From CAD Art to Rapid Metal Tools,” Mech. Eng. (Am. Soc. Mech. Eng.), 119(3), March, pp. 82–87.
Beaman, J. J., Barlow, J. W., Bourell, D. L., Crawford, R. H., Marcus, H. L., and McAlea, K. P., 1997, Solid Freeform Fabrication-A New Direction in Manufacturing, Kluwer Academic Publishers.
Nau, W. H., 1991, “Embedding Sensors Using Stereolithography,” Master of Science Thesis, Clemson University, Clemson, South Carolina.
Danforth, S. C., and Safari, A., 1996, “Solid Freeform Fabrication: Novel Manufacturing Opportunities for Electronic Ceramics,” IEEE International Symposium on Applications of Ferroelectrics, Vol. 1, pp. 183–188.
Safari, A., and Danforth, S. C., 1998, “Development of Novel Piezoelectric Ceramics and Composites for Sensors and Actuators by Solid Freeform Fabrication,” IEEE International Symposium on Applications of Ferroelectrics, pp. 229–234.
Safari, A., Danforth, S. C., Kholkin, A. L., Cornejo, I. A., Mohammadi, F., McNulty, T., and Panda, R., 1999, “Processing of Novel Electroceramic Components by SFF Techniques,” Materials Research Society Symposium-Proceedings, Vol. 542, pp. 85–96.
Bandyopadhyay,  A., Panda,  R. K., McNulty,  T. F., Mohammadi,  F., Danforth,  S. C., and Safari,  A., 1998, “Piezoelectric Ceramics and Composites via Rapid Prototyping Techniques,” Rapid Prototyping J., 4(1), pp. 37–49.
Denham, H., George, G., Rintoul, L., and Calvert, P., 1996, “Fabrication of Polymers and Composites Containing Embedded Sensors,” Proceedings of SPIE-The International Society for Optical Engineering, Vol. 2779, pp. 742–747.
Denham, H. B., Anderson, T. A., Madenci, E., and Calvert, P. D., 1997, “Embedded PVF2 Sensors for Smart Composites,” Proceedings of SPIE-The International Society for Optical Engineering, Vol. 3040, pp. 138–147.
Calvert, P., Denham, H., and Anderson, T., 1999, “Freeform Fabrication of Composites with Embedded Sensors,” Proceedings of SPIE-The International Society for Optical Engineering, Vol. 3670, pp. 128–133.
Sun,  L., Jakubenas,  K. J., Crocker,  J. E., Harrison,  S., Shaw,  L. L., and Marcus,  H. L., 1998, “In Situ Thermocouples in Macro-components Fabricated Using SALD and SALDVI Techniques. I. Thermochemical Modeling,” Mater. Manuf. Processes, 13(6), November, pp. 859–882.
Sun,  L., Jakubenas,  K. J., Crocker,  J. E., Harrison,  S., Shaw,  L. L., and Marcus,  H. L., 1998, “In Situ Thermocouples In Macro-components Fabricated Using SALD and SALDVI Techniques. II. Evaluation of Processing Parameters,” Mater. Manuf. Processes, 13(6), pp. 883–907.
Sun,  L., Jakubenas,  K. J., Crocker,  J. E., Harrison,  S., Shaw,  L. L., and Marcus,  H. L., 1998, “In Situ Thermocouples in Macro-components Fabricated Using SALD and SALDVI Techniques. III. Fabrication and Properties of the SiC/C Thermocouple Device,” Mater. Manuf. Processes, 13(6), November, pp. 909–919.
Sun,  L., and Shaw,  L. L., 1999, “Solid Freeform Fabrication of In-situ SiC/C Thermocouples in Macrocomponents,” Metall. Mater. Trans. A, 30(9), September, pp. 2549–2552.
Weiss,  L. E., Merz,  R., Prinz,  F. B., Neplotnik,  G., Padmanabhan,  P., Schultz,  L., and Ramaswami,  K., 1997, “Shape Deposition Manufacturing of Heterogeneous Structures,” J. Manuf. Syst., 16(4), June, pp. 239–248.
Golnas, Tassos, 1999, “Thin-film Mechanical Sensors Embedded in Metallic Structures,” Ph.D. Thesis, Stanford University, December.
Li, X. C., Golnas, A., and Prinz, F., 2000, “Shape Deposition Manufacturing of Smart Metallic Structures with Embedded Sensors,” Proceedings of SPIE-The International Society for Optical Engineering, Vol. 3986, pp. 160–171.
Cham, J. G., Pruitt, B. L., Cutkosky, M., Binnard, M., Weiss, L. E., and Neplotnik, G., 1999, “Layered Manufacturing with Embedded Components: Process Planning Considerations,” Proceedings of DETC99: 1999 ASME Design Engineering Technical Conference, Las Vegas, NV, September 12–15.
Bailey, S. A., Cham, J. G., Cutkosky, M., and Full, R., 1999, “Biomimetic Robotic Mechanisms via Shape Deposition Manufacturing,” 9th International Symposium of Robotics Research, Snowbird, Utah, October 9–12, pp. 321–327.
Udd, E., 1995, Fiber Optic Smart Structures, Wiley (Interscience), New York.
Lawrence, C. M., 1997, “Embedded Fiber Optic Strain Sensors for Process Monitoring of Composites,” Ph.D thesis, Stanford University.
Foedinger, R., Rea, D., Sirkis, J., Wagreich, R., Troll, J., Grande, R., Davis, C., and Vandiver, T. L., 1998, “Structural Health Monitoring of Filament Wound Composite Pressure Vessels with Embedded Optical Fiber Sensors,” International SAMPE Symposium and Exhibition-Proceedings, Vol. 43, No. 1, pp. 444–457
Kim,  K., Breslauer,  M., and Springer,  G. S., 1992, “Effect of Embedded Sensors on the Strength of Composite Laminates,” J. Reinf. Plast. Compos., 11(8), Aug., pp. 949–958.
Jin,  X. D., Sirkis,  J. S., Chung,  J. K., and Venkat,  V. S., 1998, “Embedded In-line Fiber etalon/Bragg Grating Hybrid Sensor to Measure Strain and Temperature in a Composite Beam,” J. Intell. Mater. Syst. Struct., 9(3), March, pp. 171–181.
Murukeshan,  V. M., Chan,  P. Y., Ong,  L. S., and Seah,  L. K., 2000, “Cure Monitoring of Smart Composites Using Fiber Bragg Grating Based Embedded Sensors,” Sens. Actuators A, 79(2), pp. 153–161.
Murukeshan,  V. M., Chan,  P. Y., and Ong,  L. S., 2001, “Intracore Fiber Bragg Gratings for Strain Measurement in Embedded Composite Structures,” Appl. Opt., 40(1), Jan., pp. 145–149.
Hill,  K. O., Fujii,  Y., Johnson,  D. C., and Kawasaki,  B. S., 1978, “Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication,” Appl. Phys. Lett., 32, pp. 647–649.
Kawasaki,  B. S., Hill,  K. O., Johnson,  D. C., and Fuji,  Y., 1978, “Narrow-band Bragg Reflections in Optical Fibers,” Opt. Lett., 3, pp. 66–68.
Othonos, A., and Kalli, K., 1999, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House, Boston.
Kersey,  A. D., Davis,  M. A., Patrick,  H. J., LeBlanc,  M., Koo,  K. P., Askins,  C. G., Putnam,  M. A., and Friebele,  E. J., 1997, “Fiber Grating Sensors,” J. Lightwave Technol., 15, pp. 1442–1463.
Reid,  M., 1998, “Temperature Dependence of Fiber Optic Bragg Gratings at Low Temperature,” Opt. Eng., 37(1), p. 237.
Lin,  G., Wang,  L., Yang,  C. C., Shih,  M. C., and Chuang,  T. J., 1998, “Thermal Performance of Metal-clad Fiber Bragg Grating Sensors,” IEEE Photonics Technol. Lett. , 10(3), p. 406.
Wagreich,  R. B., Atia,  W. A., Singh,  H., and Sirkis,  J. S., 1996, “Effects of Diametric Load on Fiber Bragg Gratings Fabricated in Low Birefringent fiber,” Electron. Lett., 26(6), pp. 1223–1224.
Kim, K. S., 1992, “A Model of Embedded Fiber Optic Fabry-Perot Temperature and Strain Sensors,” Ph.D Dissertation, Stanford University.
Van Steenkiste, R. J., 1995, “Theory of Fiber Optic Strain and Temperature Sensors,” Ph.D. Dissertation, Stanford University.
Taylor, H. F., and Lee, C. E., 1993, “Sensing Applications of Fiber Fabry-Perot Interferometers Embedded in Composites and in Metals,” Experiments in Smart Materials and Structures, ASME, AMD-vol. 181, p. 47.
Lee, C. E., Alcoz, J. J., Gibler, W., Atkins, R. A., and Taylor, H. F., 1991, “Method for Embedding Optical Fibers and Optical Fiber Sensors in Metal Parts and Structures,” Fiber Optic Smart Structures and Skins IV (SPIE Vol. 1588), p. 110.
Baldini, S. E., Tubbs, D. J., and Stange, W. A., 1990, “Embedding Fiber Optic Sensors in Titanium Matrix Composites,” Fiber Optic Smart Structures and Skins III (SPIE Vol. 1370), p. 162.
Li, X. C., 2001, “Embedded Sensors in Layered Manufacturing,” Ph.D. dissertation, Stanford University, CA.
Nickel, A., 1999, “Analysis of Thermal Stresses in Shape Deposition Manufacturing of Metal Parts,” Ph.D. Thesis, Stanford University, August.


Grahic Jump Location
A schematic representation of a Fiber Bragg Grating
Grahic Jump Location
Explosive view of embedding sequence
Grahic Jump Location
Embedded optical fiber with good bonding
Grahic Jump Location
Characterization of strain response of bare FBGs
Grahic Jump Location
Characterization of thermal response of bare FBGs
Grahic Jump Location
Strain response of Ni-coated FBGs
Grahic Jump Location
Thermal response for Ni-coated FBGs
Grahic Jump Location
Two FBGs for decoupling of temperature and strain effects
Grahic Jump Location
Calibration of decoupling sensor under thermal and axial strain loads (a) Under axial Stress (b) Under Thermal load
Grahic Jump Location
Setup of four-point bending test and cross section of the beam
Grahic Jump Location
Elastic response from embedded FBG and strain gauge
Grahic Jump Location
Measured strain (corrected from the strain gauge for the FBG location) versus FBG wavelength shifts
Grahic Jump Location
Wavelength shifts in response to strains in the plastic regime
Grahic Jump Location
Thermal response of embedded FBG in stainless steel structure
Grahic Jump Location
Residual strains monitoring by use of embedded FBG
Grahic Jump Location
Path sets of the laser cladding on the stainless steel beam
Grahic Jump Location
Wavelength shifts induced by residual strains during laser cladding




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In