0
RESEARCH PAPERS

A Formal Approach to Integrating Computer-Aided Process Planning and Shop Floor Control

[+] Author and Article Information
H. Cho, A. Derebail, T. Hale, R. A. Wysk

Department of Industrial Engineering, Texas A&M University, College Station, TX 77843-3131

J. Eng. Ind 116(1), 108-116 (Feb 01, 1994) (9 pages) doi:10.1115/1.2901800 History: Received September 01, 1992; Revised November 01, 1992; Online April 08, 2008

Abstract

A formal approach for integrating Computer-Aided Design (CAD), Computer-Aided Process Planning (CAPP), and shop floor control for rotational components is presented in this paper. It is assumed that this approach will be implemented within the framework of a three level hierarchical CIM architecture that consists of the following levels in the hierarchy: shop floor, workstation and equipment (Joshi et al., 1991). Our approach to CAPP consists of machining feature identification, definition, classification, representation, and reasoning, provided through a CAD model of a product. Geometric entities are identified from a Drawing Exchange Format (DXF) file. The identified entities form the basis for the construction of primitive manufacturing features. The primitive features are assembled together based upon the precedence among features, into a graph, called a feature graph. However, the primitive features may or may not be manufacturable in terms of depth of cut, tool geometry, surface finish, and material handling required. Hence it is necessary to convert the feature graph into a manufacturing task graph, which consists of specifications of alternative functional tasks that are manufacturable. The task graph may be converted into a hierarchical set of process plans, based on the planning criteria at each level in the control hierachy, to reflect the processing requirements at each level. The shop planning function decomposes the task graph into a set of workstation level plans. Each workstation level plan is aggregated into a set of equipment level process plans by the workstation planning function. The equipment level plan is converted into a unique task sequence by the equipment planning function. This sequence is then executed according to specifications by the equipment level execution function. Provision of alternative routes in process plans provides for flexible means of on-line planning and control.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In