Finite Element Analysis of Engine Bore Distortions During Boring Operation

[+] Author and Article Information
N. N. Kakade, J. G. Chow

Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13676

J. Eng. Ind 115(4), 379-384 (Nov 01, 1993) (6 pages) doi:10.1115/1.2901779 History: Received January 01, 1990; Revised May 01, 1992; Online April 08, 2008


Bore geometry is the major factor affecting oil comsumption, piston ring wear, and frictional losses in an engine. As such, auto industries have been constantly striving to develop better machining technologies to produce engine bores with greater precision. Experimental studies have shown that the bore distortion as a result of machining is mainly caused by temperatures and stresses created during cutting. Consequently, optimization of machining conditions so as to minimize both bore temperature gradients as well as mechanical stresses while machining should lead to the production of better bore geometry. This research develops a model aimed at simulating bore distortions caused by temperature changes and stresses generated during machining using finite element technique. The commercial finite element package ANSYS has been used along with the CAD package I-DEAS to simulate the boring process on DEC-VAX computers. The simulation procedure developed can be used to obtain a better understanding of the boring process, in particular, to determine distortion trends for different cutting conditions.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In