Finite Element Simulation of Welding of Large Structures

[+] Author and Article Information
S. Brown

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

H. Song

Anadrill, Schlumberger, 105 Industrial Boulevard, Sugarland, Texas 77478

J. Eng. Ind 114(4), 441-451 (Nov 01, 1992) (11 pages) doi:10.1115/1.2900696 History: Received October 01, 1989; Online April 08, 2008


Current simulations of welding distortion and residual stress have considered only the local weld zone. A large elastic structure surrounding a weld, however, can couple with the welding operation to produce a final weld state much different from that resulting when a smaller structure is welded. The effect of this coupling between structure and weld has the potential of dominating the final weld distortion and residual stress state. This paper employs both two-and three-dimensional finite element models of a circular cylinder and stiffening ring structure to investigate the interaction of a large structure on weld parameters such as weld gap clearance (fitup) and fixturing. The finite element simulation considers the full thermo-mechanical problem, uncoupling the thermal from the mechanical analysis. The thermal analysis uses temperature-dependent material properties, including latent heat and nonlinear heat convection and radiation boundary conditions. The mechanical analysis uses a thermal-elastic-plastic constitutive model and an element “birth” procedure to simulate the deposition of weld material. The effect of variations of weld gap clearance, fixture positions, and fixture types on residual stress states and distortion are examined. The results of these analyses indicate that this coupling effect with the surrounding structure should be included in numerical simulations of welding processes, and that full three-dimensional models are essential in predicting welding distortion. Elastic coupling with the surrounding structure, weld fitup, and fixturing are found to control residual stresses, creating substantial variations in highest principal and hydrostatic stresses in the weld region. The position and type of fixture are shown to be primary determinants of weld distortion.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In