0
RESEARCH PAPERS

Analysis of Fluid Flow through the Grinding Zone

[+] Author and Article Information
C. Guo, S. Malkin

Department of Mechanical Engineering, University of Massachusetts, Amherst, MA 01003

J. Eng. Ind 114(4), 427-434 (Nov 01, 1992) (8 pages) doi:10.1115/1.2900694 History: Received January 01, 1991; Revised November 01, 1991; Online April 08, 2008

Abstract

A theoretical model of fluid flow in grinding has been developed by an analysis of fluid flow through a porous medium. Fluid tangential velocity, radial velocity, depth of penetration into the wheel, and the useful flow rate through the grinding zone are predicted by using this model. The analysis indicates that the nozzle position, nozzle velocity (or flow rate), and the effective wheel porosity are the three main factors which most significantly influence the useful flow rate through the grinding zone. A dimensionless effective wheel porosity parameter is introduced which is the ratio of the effective wheel porosity to its bulk porosity. By fitting the theoretical analysis to available experimental results, creep feed wheels were found to have much bigger dimensionless effective porosities than conventional wheels, which enhances their ability to more effectively pump fluid through the grinding zone.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In