A New Approach of Formulating the Transfer Function for Dynamic Cutting Processes

[+] Author and Article Information
D. W. Wu

Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, Illinois 60680

J. Eng. Ind 111(1), 37-47 (Feb 01, 1989) (11 pages) doi:10.1115/1.3188730 History: Received July 01, 1988; Online July 30, 2009


The dynamics of a cutting process are very complex in nature. It involves not only the changes of plastic state in the intensive deformation zone but also the elastic behavior of work material surrounding the deformation zone, especially in the vicinity of the tool nose region. These changes are induced by the inner and outer modulations of the uncut chip thickness during the process and at the same time govern the variation of the cutting force. Based on these causal relationships, the transfer function between the vibration variables and the dynamic force components for a single degree-of-freedom machining system has been developed. The characterization of the mechanics of the cutting process by the new model provides more insight into the physics of the cutting dynamics. The model has been tested through computer simulation for both orthogonal wave-generating and wave-removing processes. By reference to existing experimental evidence, the theoretical predictions show a very good agreement with the test results.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In