Mold Cooling System Design Using Boundary Element Method

[+] Author and Article Information
T. H. Kwon

Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854

J. Eng. Ind 110(4), 384-394 (Nov 01, 1988) (11 pages) doi:10.1115/1.3187898 History: Received September 01, 1986; Online July 30, 2009


Cooling system design in injection molding industries is of great importance because it significantly affects productivity and the quality of the final part. It would thus be very helpful for mold designers to be able to use a computer aided design tool in determining locations of cooling channels and process conditions to achieve uniform cooling and minimum cooling time. Towards this goal, the Boundary Element Method (BEM) has been applied to develop a system of computer aided cooling system design programs: (a) an interactive design program using a two-dimensional BEM and (b) a cooling analysis program using a three-dimensional BEM. In the present work, the injection molding cooling process is simplified by quasi-steady-state heat transfer in terms of cycle-averaged temperature. In this regard, a cycle-averaged heat transfer coefficient between a mold and polymeric material has been introduced for a cycle-averaged boundary condition. In the present paper, discussion centers on the fundamental modeling of the cooling process and the features of the BEM mold cooling design systems.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In