An Approximate Three-Dimensional Metal Flow Analysis for Shape Rolling

[+] Author and Article Information
Kevin F. Kennedy

Aluminum Company of America, Alcoa Center, PA 15069

J. Eng. Ind 110(3), 223-231 (Aug 01, 1988) (9 pages) doi:10.1115/1.3187873 History: Received December 10, 1987; Online July 30, 2009


An approximate three-dimensional metal flow analysis for shape rolling is developed. The analysis, which is presently applicable to rod rolling, is based on an upper-bound approach in which an iterative numerical procedure is used to minimize the energy dissipation rate to obtain kinematically admissible velocity field solutions of the rolling problem. Once the velocity field and the final shape of the plastically deforming body are known, then elementary stress analysis techniques are used to determine the force related aspects of the rolling problem. It is assumed that the rolled material is rigid perfectly plastic, and only the purely mechanical aspects of the metal deformation problem in rolling are considered assuming isothermal conditions. The analysis shows good agreement with elongation and roll separating force measurements in the hot rolling of mild carbon steel for a variety of workpiece and roll cross-section geometries commonly used in rod rolling.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In