0
RESEARCH PAPERS

Measurement of the Interfacial Stresses in Rolling Using the Elastic Deformation of the Roll

[+] Author and Article Information
D. J. Meierhofer, K. A. Stelson

Productivity Center, Department of Mechanical Engineering, University of Minnesota, 111 Church Street S.E., Minneapolis, Minnesota 55455

J. Eng. Ind 109(4), 362-369 (Nov 01, 1987) (8 pages) doi:10.1115/1.3187140 History: Received July 12, 1987; Online July 30, 2009

Abstract

A new method to measure the frictional stresses and normal pressure in the roll gap during cold rolling, and experimental verification of this new method, are presented. The method overcomes many of the shortcomings of pin-type sensors. The elastic deformation of the roll itself is measured with strain gages, and is used to calculate the stresses between the sheet and the roll. Since no modification of the roll is necessary, the deformation process is undisturbed by the measurement. Mechanical isolation of the sensor is unnecessary. The mathematical procedure used to calculate the normal pressure and frictional stresses from the measured strains explicitly acknowledges that these strains are the result of the entire distribution of pressures and shears in the roll gap. An experimental rolling mill was constructed to verify the proposed method. Lead was rolled, and the resulting pressure and frictional stress distributions in the roll gap were measured. Several features of these distributions are in agreement with measurements made by various investigators using other techniques, thereby confirming the usefulness of the new method. Future work is proposed to increase the accuracy with which the roll gap stresses may be measured.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In