An Analysis of Three-Dimensional Upset Forging of Regular Polygonal Blocks by Using the Upper-Bound Method

[+] Author and Article Information
D. Y. Yang, J. H. Kim

Department of Production Engineering, Korea Advanced Institute of Science and Technology, Seoul, Korea

J. Eng. Ind 109(2), 155-160 (May 01, 1987) (6 pages) doi:10.1115/1.3187106 History: Received August 07, 1986; Online July 30, 2009


A simple kinematically admissible velocity field for three-dimensional deformation in upset forging of regular polygonal blocks is proposed which takes into account the sidewise spread as well as the bulging along thickness. From the proposed velocity field the upper-bound load and the deformed configuration are determined by minimizing the total power consumption with respect to three chosen parameters. Experiments are carried out with annealed commercially pure copper at room temperature for different thicknesses, billet shapes and lubrication conditions. The theoretical predictions both in the forging load and the deformed configuration are in good agreement with the experimental results. It is thus shown that the velocity field proposed in this work can be conveniently used for the prediction of the forging load and deformation in the upset forging of regular polygonal blocks.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In