0
RESEARCH PAPERS

The Upper Bound Approach to Plane Strain Problems Using Linear and Rotational Velocity Fields—Part I: Basic Concepts

[+] Author and Article Information
Betzalel Avitzur

Institute for Metal Forming, Department of Metallurgy and Materials Engineering, Lehigh University, Bethlehem, Pa. 18015

Waclaw Pachla

High Pressure Research Center, Polish Academy of Sciences, “Unipress,” Warsaw, Poland

J. Eng. Ind 108(4), 295-306 (Nov 01, 1986) (12 pages) doi:10.1115/1.3187080 History: Received May 10, 1985; Online July 30, 2009

Abstract

This paper investigates an upper bound approach to plane strain deformation of a rigid, perfectly plastic material. In this approach the deformation region is divided into a finite number of rigid triangular bodies that slide with respect to one another. Neighboring rigid body zones are analyzed in specific cases where the zones are (1) both in rotational motion, (2) one in linear, the other in rotational motion and (3) both in linear motion. Specific equations are presented that describe surfaces of velocity discontinuity (shear boundaries) between the moving bodies, and the velocity discontinuities and shear power losses for each of the three cases. The shape of the surface of velocity discontinuity is uniquely determined by the velocity ratios of neighboring bodies, their relative directions of motion and, where applicable, the positions of their centers of rotation. Where one or both neighboring bodies exhibit rotational motion, the surface of velocity discontinuity is found to be a cylindrical surface. In the case of two neighboring bodies, each with linear motion, the surface of velocity discontinuity is found to be planar. The velocity discontinuity is found to be constant along the entire surface of velocity discontinuity. The characteristics of the surfaces of velocity discontinuity in plane strain deformation are investigated. The upper-bound approach to plane strain problems can be successfully adapted to real metal forming processes, including sheet and strip drawing, extrusion, forging, rolling, leveling, ironing, and machining.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In