Tool Wear Monitoring Through the Dynamics of Stable Turning

[+] Author and Article Information
S. B. Rao

National Broach & Machine, 17500 Twenty-Three Mile Road, Mt. Clemens, MI 48044

J. Eng. Ind 108(3), 183-190 (Aug 01, 1986) (8 pages) doi:10.1115/1.3187062 History: Received January 03, 1986; Online July 30, 2009


This paper describes a microcomputer-based technique for monitoring the flank wear on a single-point tool engaged in a turning operation. The technique is based on the real-time computation of a Wear Index (WI). This WI is a measure of the resistance, at the tool tip-workpiece interface along the flank, to the forced oscillations of the cantilever portion of the tool holder, during machining. Increasing flank wear results in an increasing area of contact between tool tip and workpiece. This translates to an increasing WI, proportional to flank wear-land width and independent of other cutting process variables. This WI, which can be computed on-line as a ratio of the measured dynamic force amplitude to the vibration amplitude, at the first natural frequency of the cantilever portion of the toolholder, forms the basis of the microcomputer system described in this paper for tool wear monitoring.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In