Influence of Car Tonnage and Wheel Adhesion on Rail and Wheel Wear: A Laboratory Study

[+] Author and Article Information
S. Kumar, P. K. Krishnamoorthy, D. L. Prasanna Rao

Railroad Engineering Laboratory, Dept. of Mechanical and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616

J. Eng. Ind 108(1), 48-58 (Feb 01, 1986) (11 pages) doi:10.1115/1.3187041 History: Received August 20, 1985; Online July 30, 2009


This study presents the results and analysis of a laboratory investigation, of rail and wheel wear under clean and dry tangent track conditions, utilizing the IIT-GMEMD quarter scale simulation facility. Important factors influencing rail degradation are discussed followed by five different load/lubrication classifications of contacts. Influence of two important parameters, viz. wheel load (N) and adhesion coefficient of the tractive wheels (μ), on rail and wheel wear has been studied under conditions of Hertzian simulation. Seven separate experiments were conducted to measure wear of rail and nontractive freight car wheels. These were followed by six additional wear tests, simulating a typical U.S. locomotive, to investigate the effect of adhesion coefficients. The wear rates for tonnages* exceeding 65–70 t car increase at a much higher rate than those for tonnages below 65 t. Nonlinear relationship showing wear rate proportional to N 5.4 and a bilinear relation have been developed. Considerations of contact plasticity show that the stress corresponding to 68-t freight load is a threshold stress which when exceeded leads to continual plasticity of new rails thus preventing shakedown. The influence of adhesion coefficient is also quite nonlinear, the wear rates being much higher for μ > 0.3. Photomicrographs of the surfaces of the wheel and rail at the end of the tests showed mild wear for μ ≤ 0.25 and severe wear for μ ≥ 0.35 indicating a transition of wear mechanism from mild to severe slightly above μ = 0.25. Wear rate is found to be approximately proportional to the square of the adhesion coefficient. A bilinear relation of wear rate versus μ, which is more accurate, is also given. It was observed that the effect of adhesion is more severe than the effect of tonnage alone. However, the tonnage effect is of serious consequence regarding plastic shakedown of the rails. A formulation of wear rate as a combined function of tonnage and adhesion coefficient is given. The urgent need for a solution of this problem is pointed out.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In