0
RESEARCH PAPERS

Analysis of a Test Method of Sheet Metal Formability Using the Finite-Element Method

[+] Author and Article Information
C. H. Toh, Y. C. Shiau, Shiro Kobayashi

Department of Mechanical Engineering, University of California, Berkeley, CA

J. Eng. Ind 108(1), 3-8 (Feb 01, 1986) (6 pages) doi:10.1115/1.3187039 History: Received July 19, 1985; Online July 30, 2009

Abstract

The rigid-plastic finite element method was used to study the formability of sheet materials. In the finite element simulations, sheet material was assumed to be rigid plastic and to follow Hill’s anisotropic yield criterion and its associated flow rules. The work hardening effect and Coulomb friction were incorporated into the analysis. Hasek’s test, hemispherical punch stretching of the circular blank with circular cutoff, was analyzed in detail by simulation. The computed solutions were obtained using different blank geometries and coefficients of friction between the tool-sheet interface. Strain paths of critical elements were plotted in major and minor surface strain space. Experiments were also carried out using AISI 304 stainless steel sheets, and the results were compared with predictions for load-displacement curves and thickness strain distributions. Further, an attempt was made to construct a forming limit curve based on the detailed analysis of the test by computation.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In