RESEARCH PAPERS: Papers on Production Engineering

The Ledge Tool: A New Cutting Tool Insert

[+] Author and Article Information
R. Komanduri, M. Lee

General Electric Co., Corporate Research and Development, Schenectady, NY 12301

J. Eng. Ind 107(2), 99-106 (May 01, 1985) (8 pages) doi:10.1115/1.3185990 History: Received July 19, 1984; Online July 30, 2009


The salient features of a simple, wear-tolerant cemented carbide tool are described. Results are presented for high-speed machining (3 to 5 times the conventional speeds) of titanium alloys in turning and face milling. This tool, termed the ledge cutting tool , has a thin (0.015 to 0.050 in.) ledge which overhangs a small distance (0.015 to 0.060 in.) equal to the depth of cut desired. Such a design permits only a limited amount of flank wear (determined by the thickness of the ledge) but continues to perform for a long period of time as a result of wear-back of the ledge. Under optimum conditions, the wear-back occurs predominantly by microchipping. Because of geometric restrictions, the ledge tool is applicable only to straight cuts in turning, facing, and boring, and to face milling and some peripheral milling. Also, the maximum depth of cut is somewhat limited by the ledge configuration. In turning, cutting time on titanium alloys can be as long as ≈ 30 min. or more, and metal removal of ≈ 60 in.3 can be achieved on a single edge. Wear-back rates in face milling are about 2 to 3 times higher than in straight turning. The higher rates are attributed here to the interrupted nature of cutting in milling. Use of a grade of cemented carbide (e.g., C1 Grade) which is too tough or has too thick a ledge for a given application leads to excessive forces which can cause gross chipping of the ledge (rapid wear) and/or excessive deflection of the cutting tool with reduced depth of cut. Selection of a proper grade of carbide (e.g., Grades C2, C3, C4) for a given application results in uniform, low wear-back caused by microchipping. Because of the end cutting edge angle (though small, ≈ 1 deg) used, the ledge tool can generate a slight taper on very long parts; hence an N.C. tool offset may be necessary to compensate for wear-back. The ledge tool is found to give excellent finish (1 to 3 μm) in both turning and face milling. In general, conventional tooling with slight modifications can be used for ledge machining. The ledge tool can also be used for machining cast iron at very high speeds.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In