0
TECHNICAL PAPERS

On Multistage Deep Drawing of Axisymmetric Components

[+] Author and Article Information
Prakash Sonis, N. Venkata Reddy, G. K. Lal

Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India

J. Manuf. Sci. Eng 125(2), 352-362 (Apr 15, 2003) (11 pages) doi:10.1115/1.1556399 History: Received August 01, 2001; Revised August 01, 2002; Online April 15, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Atkinson,  M., 1967, Sheet Metal Industries, 44, p. 167.
Chiang,  D. C., and Kobayashi,  S., 1966, “The Effect of Anisotropy and Workhardening Characteristics on Stress and Strain Distribution in Deep Drawing,” ASME J. Eng. Ind., 88, p. 443.
El-Sebaie,  M. G., and Mellor,  P. B., 1972, “Plastic Instability Conditions in the Deep Drawing of a Circular Blank of Sheet Metal,” Int. J. Mech. Sci., 14, p. 535.
Leu,  D. K., 1997, “Prediction of the Limiting Drawing Ratio and the Maximum Drawing Load in Cup Drawing,” Int. J. Mach. Tools Manuf., 37, p. 201.
Leu,  D. K., 1999, “The Limiting Drawing Ratio for Plastic Instability of the Cup Drawing Process,” J. Mater. Process. Technol., 86, p. 168.
Whitely,  R. L., 1960, Trans. ASM, 52, p. 154.
Woo,  D. M., 1968, “On The Complete Solution The Deep Drawing Problem,” Int. J. Mech. Sci., 10, p. 83.
Wright,  J. C., 1962, “Relationship Between Mechanical Properties, Deep Drawablity and Stretch-Formability for Some Non-ferrous Sheet Materials,” Sheet Metal Industries, 39, p. 887.
Hill, R., 1950, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, U.K.
Korhonen,  A. S., 1982, “Drawing Force in Deep Drawing of Cylindrical Cup with Flat Nosed Punch,” ASME J. Eng. Ind., 104, p. 29.
Reissner,  J., and Ehrismann,  R., 1987, “Computer-Aided Deep Drawing of Two Part Cans,” CIRP Ann., 36, p. 199.
Oskada,  K., Wang,  C. C., and Mori,  K., 1995, “Controlled FEM Simulation for Determining History of Blank Holding Force in Deep Drawing,” CIRP Ann., 44, p. 243.
Ahmetoglu,  M., Broek,  T. R., Kinzel,  G., and Altan,  T., 1995, “Control of Blank Holder Force to Eliminate Wrinkling and Fracture in Deep Drawing Rectangular Parts,” CIRP Ann., 44, p. 247.
Siegert,  K., Dannenmann,  E., Wagner,  S., and Galaiko,  A., 1995, “Closed Loop Conrol System For Blank Holder Forces in Deep Drawing,” CIRP Ann., 44, p. 251.
Esche,  S. K., Khamitkar,  S., Kinzel,  G. L., and Altan,  T., 1996, “Process and Die Design for Multi-step Forming of Round Parts from Sheet Metal,” J. Mater. Process. Technol., 59, p. 24.
Fogg,  B., 1968, “Theoretical Analysis for the Redrawing of the Cylindrical Cups Through Conical Dies Without Pressure Sleeves,” J. Mech. Eng. Sci., 10, p. 141.
Parsa,  M. H., Yamaguchi,  K., Takakura,  N., and Imatani,  S., 1994, “Consideration of the Redrawing of Sheet Metals Based on Finite Element Simulation,” J. Mater. Process. Technol., 47, p. 87.
Min,  D. K., Jeon,  B. H., Kim,  H. J., and Kim,  N., 1995, “A Study on Process Improvements of Multi-Stage Deep Drawing by The Finite Element Method,” J. Mater. Process. Technol., 54, p. 230.
Esche,  S. K., Ahmetoglu,  M., Kinzel,  G. L., and Altan,  T., 2000, “Numerical and Experimental Investigation of Redrawing of Sheet Metals,” J. Mater. Process. Technol., 98, p. 17.
Eshel,  G., Barash,  M., and Johnson,  W., 1986, “Rule Based Modeling for Planning Axisymmetrical Deep Drawing,” J. Mech. Work. Technol., 14, p. 1.
Sitaram,  S. K., Kinzel,  G. L., and Altan,  T., 1991, “A Knowledge Based System for Process Sequence Design in Axisymmetric Sheet Metal Forming,” J. Mater. Process. Technol., 25, p. 247.
Doege,  E., and Schulte,  S., 1992, “Design of Deep Drawn Components with Elementary Calculation Methods,” J. Mater. Process. Technol., 34, p. 439.
Tisza,  M., 1995, “Expert Systems for Metal Forming,” J. Mater. Process. Technol., 53, p. 423.
Ghosh, A., and Mallik, A. K., 1985, Manufacturing Science, Affiliated Ease-West Press Publishers Ltd., India.
Lange, K., 1985, HandBook of Metal Forming, McGraw-Hill.
Hosford, W. F., and Caddell, R. M., 1983, Metal Forming—Mechanics and Metallurgy, Prentice Hall.
Rogers, R. W., and Anderson, W. A., 1971, Metal Forming—Interrelation between Theory and Practice, A. L. Hoffmanner, ed., Plenium Press.
Schuler, 1988, Metal Forming HandBook, Springer.
Thorp,  J. M., 1973, Sheet Met. Ind., 50, p. 99.
Eary, D. F., and Reed, E. A., 1974, Techniques of Pressworking Sheet Metal, Prentice Hall.
Miller, F. H., 1949, Analytical Geometry and Calculus, Chapman and Hall.

Figures

Grahic Jump Location
Schematic representation of cup drawing, showing the co-ordinate system and dimensional notations
Grahic Jump Location
Force acting on the die arc region
Grahic Jump Location
Radial stresses in the flange element
Grahic Jump Location
Section of a partial drawn cup
Grahic Jump Location
Variation of LDR with normal anisotropic value for flat bottom cups drawn from soft aluminum. (σ̄=12.02ε̄0.227 Kp/mm2y=2.93 Kp/mm2,rc0=50.8 mm,rd=8.635 mm,t0=1.016 mm)
Grahic Jump Location
Variation of LDR with normal anisotropic value for flat bottom cups drawn from AA 3003. (σ̄=157.1ε̄0.235 MPa,σy=41 MPa,rc0=50.8 mm,rd=8.635 mm,t0=1.016 mm)
Grahic Jump Location
Variation of LDR with normal anisotropy for different values of strain hardening exponent for redraw (σ̄=610ε̄0.263 MPa,σy=155 MPa, μ=0.1, R0=100 mm,rd=6.8 mm,t0=1.0 mm)
Grahic Jump Location
Variation of LDR with normal anisotropy for different values of coefficient of friction for redraw (σ̄=610ε̄0.263 MPa,σy=155 MPa,R0=100 mm,rd=6.8 mm,t0=1.0 mm)
Grahic Jump Location
Variation of LDR with strain hardening exponent for different values of normal anisotropy for redraw (σ̄=610ε̄0.263 MPa,σy=155 MPa,R0=100 mm,rd=6.8 mm,t0=1.0 mm)
Grahic Jump Location
Variation of LDR with strain hardening exponent for different values of coefficient of friction for redraw (σ̄=610ε̄0.263 MPa,σy=155 MPa,R̄=1.5,R0=100 mm,rd=6.8 mm,t0=1.0 mm)
Grahic Jump Location
Variation of LDR with coefficient of friction for different values of normal anisotropy for redraw (σ̄=610ε̄0.263 MPa,σy=155 MPa,R0=100 mm,rd=6.8 mm,t0=1.0 mm)
Grahic Jump Location
Variation of LDR with coefficient of friction for different values of strain hardening exponent for redraw (σ̄=610ε̄0.263 MPa,σy=155 MPa,R̄=1.5,R0=100 mm,rd=6.8 mm,t0=1.0 mm)
Grahic Jump Location
Variation of LDR with die arc radius, rd for different values of normal anisotropy for redraw (σ̄=610ε̄0.263 MPa,σy=155 MPa,R0=100 mm, μ=0.1, t0=1.0 mm)
Grahic Jump Location
Variation of LDR with die arc radius for different values of strain hardening exponent for redraw (σ̄=610ε̄0.263 MPa,σy=155 MPa,R̄=1.5,R0=100 mm,t0=1.0 mm)
Grahic Jump Location
Calculated variation of LDR as a function of the die arc radius for different values of coefficient of friction for redraw (σ̄=610ε̄0.263 MPa,σy=155 MPa,R̄=1.5,R0=100 mm,t0=1.0 mm)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In