RESEARCH PAPERS: Papers on Production Engineering

Tensile Fracture of Drawn Copper and Mild Steel

[+] Author and Article Information
E. G. Thomsen

Department of Mechanical Engineering, University of California, Berkeley, Calif. 94720

J. Eng. Ind 104(1), 91-96 (Feb 01, 1982) (6 pages) doi:10.1115/1.3185805 History: Received August 09, 1981; Online July 30, 2009


Annealed OFHC copper and SAE 1018 steel were reduced by multipass drawing from diameters of 25.4 mm (and smaller) to 11.8 mm. A comparison was made of the experimental draw stresses and those calculated by Sachs’ and Avitzur’s equations and fair agreement exists. The drawn bars were subsequently reduced in diameter by 10 percent in order to provide gage sections and then were pulled in tension to fracture. It was found that in multipass draws some work softening occurs. The oxygen-free copper showed indications that fracture was initiated at the center of the specimen. The internal fracture grew to the near shape of a sphere and separation did not occur until the load had almost decreased to zero. The mild steel apparently also fractured in the center, but complete separation took place immediately after the tensile stress reached its maximum. The fracture theories of Latham and Cockcroft, as well as that of Chen and Kobayashi, were examined and it was found that fair agreement existed. It was also found that for these particular tests, the maximum tensile stress criterion gave more convincing results.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In