0
TECHNICAL PAPERS

Intelligent Search-Based Selection of Sample Points for Straightness and Flatness Estimation

[+] Author and Article Information
M. Affan Badar, Shivakumar Raman, Pakize S. Pulat

University of Oklahoma, School of Industrial Engineering, Norman, OK 73019

J. Manuf. Sci. Eng 125(2), 263-271 (Apr 15, 2003) (9 pages) doi:10.1115/1.1556859 History: Received May 01, 2001; Revised June 01, 2002; Online April 15, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

ASME Y14.5M, 1994, Dimensioning and Tolerancing, The American Society of Mechanical Engineers, New York, NY.
Reklaitis, G. V., Ravindran, A., and Ragsdell, K. M., 1983, Engineering Optimization: Methods and Applications, John Wiley & Sons, Inc., New York, NY.
Glover, F., and Laguna, M., 1993, “Tabu Search,” Modern Heuristic Techniques for Combinatorial Problems, C. R. Reeves, ed., John Wiley & Sons, Inc., New York, NY, pp. 70–150.
Glover, F., and Laguna, M., 1997, Tabu Search, Kluwer Academic Publishers, Boston, MA.
Torczon,  V., 1997, “On the Convergence of Pattern Search Algorithms,” SIAM J. Optim., 7(1), pp. 1–25.
Badar, M. A., Raman, S., and Pulat, P. S., 2000, “Search-Based Selection of Sample Points for Form Error Estimation,” ASME Proceedings of the ASME Manufacturing Engineering Division-2000, R. J. Furness, ed., MED-Vol. 11, pp. 73–80.
Menq, C.-H., Yau, H.-T., Lai, G.-Y., and Miller, R. A., 1990, “Statistical Evaluation of Form Tolerances Using Discrete Measurement Data,” ASME Advances in Integrated Product Design and Manufacturing, P. H. Cohen and S. B. Joshi, eds., PED-Vol. 47, pp. 135–149.
Babu, U., Raja, J., and Hocken, R. J., 1993, “Sampling Methods and Substitute Geometry Algorithms for Measuring Cylinders in Coordinate Measuring Machines,” Proceedings of the Eighth Annual Meeting, American Society for Precision Engineering, pp. 70–73.
Yau,  H.-T., and Menq,  C.-H., 1996, “A Unified Least-Squares Approach to the Evaluation of Geometric Errors Using Discrete Measurement Data,” Int. J. Mach. Tools Manuf., 36(11), pp. 1269–1290.
Zhang,  Y. F., Nee,  A. Y. C., Fuh,  J. Y. H., Neo,  K. S., and Loy,  H. K., 1996, “A Neural Network Approach to Determining Optimal Inspection Sampling Size for CMM,” Computer-Integrated Manufacturing Systems, 9 (3), pp. 161–169.
Weckenmann,  A., Eitzert,  H., Garmer,  M., and Weber,  H., 1995, “Functionality-Oriented Evaluation and Sampling Strategy in Coordinate Metrology,” Precis. Eng., 17(4), pp. 244–252.
Hurt,  J. J., 1980, “A Comparison of Several Plane Fit Algorithms,” CIRP Ann., 29(1), pp. 381–384.
Hocken,  R. J., Raja,  J., and Babu,  U., 1993, “Sampling Issues in Coordinate Metrology,” ASME Manufacturing Review, 6 (4), pp. 282–294.
Caskey, G., Hari, Y., Hocken, R., Machireddy, R., Raja, J., Wilson, R., Zhang, G., Chen, K., and Yang, J., 1992, “Sampling Techniques for Coordinate Measuring Machines,” Proceedings of the 1992 NSF Design and Manufacturing Systems Conf, Atlanta, GA, Jan 8–10, pp. 983–988.
Woo,  T. C., Liang,  R., Hsieh,  C. C., and Lee,  N. K., 1995, “Efficient Sampling for Surface Measurements,” J. Manuf. Syst., 14(5), pp. 345–354.
Lee,  G., Mou,  J., and Shen,  Y., 1997, “Sampling Strategy Design for Dimensional Measurement of Geometric Features Using Coordinate Measuring Machine,” Int. J. Mach. Tools Manuf., 37(7), pp. 917–934.
Kim,  W.-S., and Raman,  S., 2000, “On the Selection of Flatness Measurement Points in Coordinate Measuring Machine Inspection,” Int. J. Mach. Tools Manuf., 40, pp. 427–443.
Kurfess,  T. R., and Banks,  D. L., 1995, “Statistical Verification of Conformance to Geometric Tolerance,” Comput.-Aided Des., 27(5), pp. 353–361.
Namboothiri,  V. N. N., and Shunmugam,  M. S., 1999, “On Determination of Sample Size in Form Error Evaluation Using Coordinate Metrology,” Int. J. Prod. Res., 37(4), pp. 793–804.
Elmaraghy,  W. H., Elmaraghy,  H. A., and Wu,  Z., 1990, “Determination of Actual Geometric Deviations Using Coordinate Measuring Machine Data,” ASME Manufacturing Review, 3 (1), pp. 32–38.
Shunmugam,  M. S., 1987, “Comparison of Linear and Normal Deviations of Forms of Engineering Surfaces,” Precis. Eng., 9(2), pp. 96–102.
Murthy,  T. S. R., and Abdin,  S. Z., 1980, “Minimum Zone Evaluation of Surfaces,” Int. J. Mach. Tool Des. Res., 20(2), pp. 123–136.
Hopp,  T. H., 1993, “Computational Metrology,” ASME Manufacturing Review, 6 (4), pp. 295–304.
Dowling,  M. M., Griffin,  P. M., Tsui,  K.-L., and Zhou,  C., 1997, “Statistical Issues in Geometric Feature Inspection Using Coordinate Measuring Machines,” ASA & ASQC Technometrics, 39 (1), pp. 3–17.
Kanada,  T., and Suzuki,  S., 1993, “Evaluation of Minimum Zone Flatness by Means of Nonlinear Optimization Techniques and Its Verification,” Precis. Eng., 15(2), pp. 93–99.
Dowling,  M. M., Griffin,  P. M., Tsui,  K.-L., and Zhou,  C., 1995, “A Comparison of the Orthogonal Least Squares and Minimum Enclosing Zone Methods for Form Error Estimation,” ASME Manufacturing Review, 8 (2), pp. 120–138.
Shunmugam,  M. S., 1986, “On Assessment of Geometric Errors,” Int. J. Prod. Res., 24(2), pp. 413–425.
Traband,  M. T., Joshi,  S., Wysk,  R. A., and Cavalier,  T. M., 1989, “Evaluation of Straightness and Flatness Tolerances Using the Minimum Zone,” ASME Manufacturing Review, 2 (3), pp. 189–195.
Badiru, K., 1999, “A Tabu-Search-Based Algorithm for Surface Inspection,” MS Thesis, Univ. of Oklahoma, Norman, OK.
Al-Sultan,  K. S., and Al-Fawzan,  M. A., 1997, “A Tabu Search Hooke and Jeeves Algorithm for Unconstrained Optimization,” European J. of Operational Research, 103, pp. 198–208.
Badar, M. A., 2002, “An Intelligent Search-Based Methodology for Selection of Sample Points for Form Error Estimation,” PhD Dissertation, Univ. of Oklahoma, Norman, OK.

Figures

Grahic Jump Location
Sample points for a line feature, tolerance=|emax(+)|+|emax(−)|
Grahic Jump Location
All possible subsets of the steps for CS in R25
Grahic Jump Location
The pattern step in R2, given xk≠xk−1,k>05
Grahic Jump Location
Region-elimination algorithm flowchart for straightness
Grahic Jump Location
Tabu search algorithm flowchart for flatness
Grahic Jump Location
Hybrid search algorithm flowchart for flatness
Grahic Jump Location
Deviations for the initial five data points for straightness
Grahic Jump Location
Flat plate data set (the initial points are underlined)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In