0
RESEARCH PAPERS

Application of the Finite Element Method to the Nonlinear Inverse Heat Conduction Problem Using Beck’s Second Method

[+] Author and Article Information
B. R. Bass

Computer Sciences Division, Union Carbide-Nuclear Division, Oak Ridge, Tenn.

J. Eng. Ind 102(2), 168-176 (May 01, 1980) (9 pages) doi:10.1115/1.3183849 History: Received September 18, 1978; Online July 30, 2009

Abstract

The calculation of the surface temperature and surface heat flux from a measured temperature history at an interior point of a body is identified in the literature as the inverse heat conduction problem. This paper presents, to the author’s knowledge, the first application of a solution technique for the inverse problem that utilizes a finite element heat conduction model and Beck’s nonlinear estimation procedure. The technique is applicable to the one-dimensional nonlinear model with temperature-dependent thermophysical properties. The formulation is applied first to a numerical example with a known solution. The example treated is that of a periodic heat flux imposed on the surface of a rod. The computed surface heat flux is compared with the imposed heat flux to evaluate the performance of the technique in solving the inverse problem. Finally, the technique is applied to an experimentally determined temperature transient taken from an interior point of an electrically-heated composite rod. The results are compared with those obtained by applying a finite difference inverse technique to the same data.

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In