0
RESEARCH PAPERS

Economic Sizing of Steam Piping and Insulation

[+] Author and Article Information
W. J. Wepfer, E. F. Obert

University of Wisconsin-Madison Madison, WI

R. A. Gaggioli

Marquette University, Milwaukee, WI

J. Eng. Ind 101(4), 427-433 (Nov 01, 1979) (7 pages) doi:10.1115/1.3439532 History: Received August 29, 1978; Online July 15, 2010

Abstract

This paper presents a simple method for the optimal economic selection of pipe size and insulation thickness for steam piping systems. The primary operating costs inherent in any such system are consequences of fluid-flow friction and heat transfer losses. Striving to conserve energy, the engineer is motivated to select large pipe diameters and insulation thicknesses. But how large should the pipe diameter be and how much insulation is necessary? The answer is simply to make that investment in piping and insulation which minimizes the sum of the capital and operating costs (friction and heat transfer). Thus it is imperative that the operating expenses be precisely evaluated. The key is the recognition that it is available energy which is the commodity of value—that it is necessary to assign an economic value (cost) to the steam based on its available energy content. Because friction and heat transfer destroy available energy, their respective costs can then be accurately assessed. As an example a bleeder steam line that delivers 55,300 lbm/hr (7 kg/s) at 93.8 psia (0.65 MPa) and 603 F (317 C) to a feedwater heater is analyzed to show the optimal nominal pipe diameter and insulation thickness to be 12 in. (30.48 cm) and 3.5 in. (8.89 cm), respectively.

Copyright © 1979 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In