Destructive Vibration of Trashracks due to Fluid-Structure Interaction

[+] Author and Article Information
S. H. Crandall

Massachusetts Institute of Technology, Cambridge, Mass.

S. Vigander, P. A. March

Engineering Laboratory, Tennessee Valley Authority, Norris, Tenn.

J. Eng. Ind 97(4), 1359-1365 (Nov 01, 1975) (7 pages) doi:10.1115/1.3438783 History: Received May 27, 1975; Online July 15, 2010


Trashracks in pumped storage systems with high flow rates can develop fatigue failures due to excessive vibration excited by the flow past the rods in the rack. An experimental study of trashrack vibration was made on a half-scale model of a prototype rack design for the TVA Raccoon Mountain pumped storage system. The natural frequencies and loss factors of the first dozen natural modes of the rack were determined in air before placing the rack in a water channel. Under normal flow rates the rack developed “locked-in” pure tone vibrations of sufficient amplitude to cause early fatigue failure. Unexpectedly, the frequency of the vibration was not close to the vortex-shedding frequency and the motion of the rods was not transverse to the flow. The “locked-in” modes were identified as modes in which the bending displacements of the rods were parallel to the flow. Further investigation showed that the excitation mechanism involved synchronization between the fluctuating drag involved in vortex shedding and the fore-and-aft motion of the rods in sharply resonant modes. Modifications of the original design were introduced to defeat the identified mechanism. In order to completely eliminate the “lock-in” phenomenon it was necessary to change the bar cross-sectional shape and to introduce additional damping into the rack structure. A half-scale model of the modified design was built and tested to verify the absence of destructive vibrations.

Copyright © 1975 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In