Control of Thin Film Growth in Chemical Vapor Deposition Manufacturing Systems: A Feasibility Study

[+] Author and Article Information
Wilson K. S. Chiu, Yogesh Jaluria, Nick G. Glumac

Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ 08855

J. Manuf. Sci. Eng 124(3), 715-724 (Jul 11, 2002) (10 pages) doi:10.1115/1.1465434 History: Received June 01, 2000; Revised December 01, 2001; Online July 11, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Mahajan,  R. L., 1996, “Transport Phenomena in Chemical Vapor-Deposition Systems,” Adv. Math., 28, pp. 339–425, Academic Press, Inc.
Jensen,  K. F., Einset,  E. O., and Fotiadis,  D. I., 1991, “Flow Phenomena in Chemical Vapor Deposition of Thin Films,” Annu. Rev. Fluid Mech., 23, pp. 197–232.
Mouche,  M.-J., Mermet,  J.-L., Pires,  F., Richard,  E., Torres,  J., Palleau,  J., and Braud,  F., 1995, “Process Optimization of Copper MOCVD Using Modeling Experimental Design,” Appl. Surf. Sci., 91, pp. 129–133.
Tanemura,  M., Iwata,  K., Takahashi,  K., Fujimoto,  Y., Okuyama,  F., Sugie,  H., and Filip,  V., 2001, “Growth of Aligned Carbon Nanotubes by Plasma-Enhanced Chemical Vapor Deposition: Optimization of Growth Parameters,” J. Appl. Phys., 90(3), pp. 1529–1533.
Wang,  X. A., and Mahajan,  R. L., 1995, “CVD Epitaxial Deposition in a Vertical Barrel Reactor—Process Modeling and Optimization Using Neural-Network Models,” J. Electrochem. Soc., 142(9), pp. 3123–3132.
Xie,  H., Lee,  Y. C., Mahajan,  R. L., and Su,  R., 1994, “Process Optimization Using a Fuzzy-Logic Response-Surface Method,” IEEE Trans. Compon., Packag. Manuf. Technol., Part A, 17(2), pp. 202–211.
Chae,  Y. K., Egashira,  Y., Shimogaki,  Y., Sugawara,  K., and Komiyama,  H., 1999, “Chemical Vapor Deposition Reactor Design Using Small-Scale Diagnostic Experiments Combined With Computational Fluid Dynamics Simulations,” J. Electrochem. Soc., 146(5), pp. 1780-1788.
Southwell,  R. P., Mendicino,  M. A., and Seebauer,  E. G., 1996, “Optimization of Selective TiSi2 Chemical Vapor Deposition by Mechanistic Chemical Kinetics,” J. Vac. Sci. Technol. A, 14(3), pp. 928–934.
Kee, R. J., Ting, A., and Spence, P. A., 1995, “Understanding and Improving Materials Processing Through Interpreting and Manipulating Predictive Models,” Chemical Vapor Deposition of Refractory Metals and Ceramics III, Vol. 363, pp. 3–14. Materials Research Society.
Raja,  L. L., Kee,  R. J., Serban,  R., and Petzold,  L. R., 2000, “Computational Algorithm for Dynamic Optimization of Chemical Vapor Deposition Processes in Stagnation Flow Reactors,” J. Electrochem. Soc., 147(7), pp. 2718–2726.
Gevelber, M. A., Toledo-Quiñones, M., Bufano, M., and Can Deniz, M., 1995, “Modelling TiN Deposition Dynamics for Control of CVD,” Proceedings of the IMECE, Vol. 69–2, pp. 1093–1105, ASME MD.
Baliga,  J., 1997, “Depositing Diffusion Barriers,” Semicond. Int., pp. 76–81 May.
Chatterjee,  S., Sudarshan,  T. S., and Chandrashekhar,  S., 1992, “Review: Modelling and Experimental Studies of Properties of TiN Coatings,” J. Mater. Sci., 27, pp. 1989–2006.
Rebenne,  H. E., and Bhat,  D. G., 1994, “Review of CVD TiN Coatings for Wear-Resistant Applications: Deposition Processes, Properties and Performance,” Surf. Coat. Technol., 63, pp. 1–13.
Chiu,  W. K. S., and Jaluria,  Y., 2000, “Continuous Chemical Vapor Deposition Processing With a Moving Finite Thickness Susceptor,” J. Mater. Res., 15, pp. 317–328.
Kurtz,  S. R., and Gordon,  R. G., 1986, “Chemical Vapor Deposition of Titanium Nitride at Low Temperatures,” Thin Solid Films, 140, pp. 277–290.
Chiu,  W. K. S., and Jaluria,  Y., 1999, “Effect of Buoyancy, Susceptor Motion, and Conjugate Transport in Chemical Vapor Deposition Systems,” ASME J. Heat Transfer, 121, pp. 757-761.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, John Wiley & Sons, Inc., NY.
Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B., 1988, Buoyancy-Induced Flows and Transport, Hemisphere Publishing Corporation, NY.
Panton, R. L., 1984, Incompressible Flow, John Wiley & Sons, Inc., NY.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, Philidelphia, PA.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Taylor & Francis, Philidelphia, PA, third edition.
Mills, A. F., 1992, Heat Transfer, Irwin, Inc., Boston, MA.
Buiting,  M. J., Otterloo,  A. F., and Montree,  A. H., 1991, “Kinetical Aspects of the LPCVD of Titanium Nitride from Titanium Tetrachloride and Ammonia,” J. Electrochem. Soc., 138(2), pp. 500–505.
Fogler, H. S., 1992, Elements of Chemical Reaction Engineering, Prentice Hall, NJ.
Reid, R. C., and Sherwood, T. K., 1966, The Properties of Gases and Liquids: Their Estimation and Correlation, McGraw-Hill, NY, second edition.
Chen,  N. H., 1959, “Empirical Equation for the Collision Function on Lennard-Jones Potential for Gas Diffusion Coefficient,” Industrial and Engineering Chemistry, 51, p. 1494.
Kee, R. J., Rupley, F. M., and Miller, J. A., 1996, “Chemkin-III: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics,” Technical Report SAND96-8216, Sandia National Laboratories.
Bretsznajder, S., 1971, Prediction of Transport and Other Physical Properties of Fluids, Pergamon Press, NY.
Jaluria, Y., and Torrance, K. E., 1986, Computational Heat Transfer, Hemisphere Publishing Corporation, U.S.A.
Chiu,  W. K. S., and Jaluria,  Y., 2000, “Numerical Simulation of Chemical Vapor Deposition Processes Under Variable and Constant Property Approximations,” Numer. Heat Transfer, Part A, 37, pp. 113–132.
Jaluria, Y., 1998, Design and Optimization of Thermal Systems, McGraw-Hill, NY.
Price,  J. B., Borland,  J. O., and Selbrede,  S., 1993, “Properties of Chemical-Vapor-Deposited Titanium Nitride,” Thin Solid Films, 236, pp. 311–318.
Arora, J. S., 1989, Introduction to Optimum Design, McGraw-Hill, NY.
Hojo,  J., and Kato,  A., 1981, “Direct Observation of the Formation Process of TiN Particles by CVD Method,” Yogyo Kyokaishi, 89(5), pp. 277–279.


Grahic Jump Location
Design surfaces showing (a) heating cost (b) average deposition rate (c) maximum deviation in deposition rate and (d) the objective function at XTiCl4=5×10−2
Grahic Jump Location
Streamlines and deposition rate distributions for (a) Vinlet=0.05 m/s and (b) Vinlet=0.01 m/s at a susceptor temperature Tsus=873 K and precursor concentration XTiCl4=5×10−2
Grahic Jump Location
Minimum objective function values U(Tsus*,Vinlet*) for selected XTiCl4
Grahic Jump Location
Starting points on the design space for the steepest descent method. Contours of U are shown for XTiCl4=5×10−2
Grahic Jump Location
Extracted profiles from Fig. 5 at (a) Tsus=873 K and (b) Vinlet=0.03 m/s
Grahic Jump Location
Objective function values at each descent step using the Steepest Descent method
Grahic Jump Location
Schematic of a vertical impinging chemical vapor deposition reactor



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In