The Response of Rotating Machinery to External Random Vibration

[+] Author and Article Information
J. M. Tessarzik, T. Chiang

Mechanical Technology Incorp., Latham, N. Y.

R. H. Badgley

Machinery Dynamics Center, Mechanical Technology Incorp., Latham, N. Y.

J. Eng. Ind 96(2), 477-489 (May 01, 1974) (13 pages) doi:10.1115/1.3438354 History: Received June 06, 1973; Online July 15, 2010


A high-speed turbogenerator employing gas-lubricated hydrodynamic journal and thrust bearings was subjected to external random vibrations for the purpose of assessing bearing performance in a dynamic environment. The pivoted-pad type journal bearings and the step-sector thrust bearing supported a turbine-driven rotor weighing approximately twenty-one pounds at a nominal operating speed of 36,000 rpm. The response amplitudes of both the rigid-supported and flexible-supported bearing pads, the gimballed thrust bearing, and the rotor relative to the machine casing were measured with capacitance type displacement probes. Random vibrations were applied by means of a large electrodynamic shaker at input levels ranging between 0.5 g (rms) and 1.5 g (rms). Vibrations were applied both along and perpendicular to the rotor axis. Response measurements were analyzed for amplitude distribution and power spectral density. Experimental results compare well with calculations of amplitude power spectral density made for the case where the vibrations were applied along the rotor axis. In this case, the rotor-bearing system was treated as a linear, three-mass model.

Copyright © 1974 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In