Torsional Response of Internal Combustion Engines

[+] Author and Article Information
R. L. Eshleman

Engineering Mechanics Division, IIT Research Institute, Chicago, Ill.

J. Eng. Ind 96(2), 441-449 (May 01, 1974) (9 pages) doi:10.1115/1.3438349 History: Received June 06, 1973; Online July 15, 2010


A digital simulation technique for determining the torsional response of internal combustion engines subject to constant and pulsating end item torques is described herein. A refined mathematical model of the engine and end item power shafts is utilized to determine their natural frequencies, mode shapes, torsional motions and stresses using a digital computer. The mathematical model is composed of a finite number of elements which simulate lengths of continuous, massive, elastic shaft with end attached lumped masses and springs. Forcing functions, obtained by Fourier series expansion of the engine pressure-crank angle curve, are applied at the lumped masses. The technique is applied to a small gasoline engine attached to a reciprocating compressor and to a large Diesel engine with a constant torque end item.

Copyright © 1974 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In